
A LOW COST CONTEXT ADAPTIVE ARITHMETIC CODER FOR
H.264/MPEG-4 AVC VIDEO CODING

Jian-Long Chen, Yu-Kun Lin and Tian-Sheuan Chang, Member, IEEE
Dept. Electronics Engineering, National Chiao-Tung University

Hsinchu, Taiwan, R.O.C.
{yklin,tschang}@twins.ee.nctu.edu.tw

Abstract

This paper presents a fast and low cost context adaptive binary
arithmetic encoder for H.264/MPEG-4 AVC video coding standard
through both algorithm level and architecture level optimizations.
First in the algorithm level, we process the binarization and context
generation in parallel to reduce the encoding iteration cycles to
three or four cycles from five cycles in the previous design. Second,
in the architecture level, we reduce the cycles of renormalization
loops by employing one-skipping and bit-parallelism, and save
hardware cost of arithmetic coder by merging three different
modes. The implemented design shows that it can achieve the
333MHz frequency with only 13.3K gate count.

Index Terms— CABAC, H.264

1 INTRODUCTION
H.264/MPEG-4 AVC is the latest video compression

standard that achieves the same video quality with almost
half of the bit rate than previous video coding standards [1].
In which, the entropy coder, Context-based Adaptive Binary
Arithmetic Coding (CABAC), plays an important role and
can save, 9%~14% of bit rate in typical broadcast
applications [2]. However, the design and implementation of
the CABAC is difficult due to its inherent bit-serial nature.
The coding result of one bit often has a direct effect on the
coding process of the successive bits. Thus, it is hard to use
parallel and pipeline techniques to enhance the speed of
CABAC, and thus becomes the speed bottleneck.

Though many arithmetic coding architectures have been
proposed, few CABAC designs have been proposed [3][4][5].
In [3], they proposed several software optimization methods
to reduce the CABAC loop iteration into five cycles. In [4],
their design focuses on the arithmetic coding of CABAC and
uses the software to implement the rest of CABAC flow. In
[5], they use multi-symbol coding to speedup the process.

In this paper, we optimize the CABAC design through
both algorithm and architecture levels. This paper has three
contributions. First, we rearrange the whole CABAC
algorithm to have more parallelism such that the execution
cycle is reduced to three or four cycles for one iteration

from five cycles as in [3]. Second, in the architecture we
explore its characteristics to optimize the architecture design
of whole CABAC process, including the table reduction for
binarization, simplified MPS transition for context modeling,
and the optimized arithmetic coding. Third, the optimized
arithmetic coding merges three modes into one, and adopts
one-skipping and bit-parallel method to speedup
renormalization loop. The presented design can achieve
high throughput but only with low gate count.

The organization of this paper is as follows. In Section
II, we will briefly describe the operation of CABAC in
H.264. In Section III, we will show how to rearrange the
algorithm and optimize the architecture design. Then, in
Section IV, we will show the implementation results and
comparison. Finally, a conclusion will be made in Section V.

2 OVERVIER OF CABAC IN H.264
CABAC is used as one of the entropy coding method for

H.264 video coding that is consisted of three stages:
binarization, context modeling and arithmetic coding (AC).
First, a given non-binary value syntax element will pass to
binarization to form a uniquely bin-string. Second, except
for suffix of syntax element motion vector and level
information, all of bins from binarization will enter into
decision mode, and a probability model will be selected to
assign context model. The selection of probability models
depends on previously encoded syntax elements or bins.
After receiving bin and context, AC can encode and output
the compressed data directly. AC consists of two sub-engines
and is classified into three modes. These two engines are
called decision coding engine and bypass coding engine,
while the three modes are: (1) “decision” mode” that
includes adaptive probability models and interval maintainer,
(2) “bypass” mode for fast encoding of symbols, (3)
“termination” mode for ending of encoding.

2.1. Binarization

For a given non-binary valued syntax element,
H.264/AVC adopts four schemes to do binarization. Such
fours schemes are: (1) unary, (2) truncated unary (TU), (3)

II 1051424407281/07/$20.00 ©2007 IEEE ICASSP 2007

concatenated unary/k-th order Exp-Golomb (UEGk), and (4)
the fixed-length. They are constructed as follows.

(1) The unary code word consists of x “1” bits plus a
terminating “0” bit for a given unsigned integer x,

(2) For truncated unary code, unary code is used only
when x < cMax. If x=cMax, the terminating “0” bit is
neglected.

(3) A UEGk bin-string is a concatenation of a prefix bit
string with TU and a suffix bit string with Exp-Golomb code.

(4) The FL codeword of x is simply x with a fixed
(minimum) number FLbits=log2 (cMax+1) of bits.

2.2. Context Modeling

In the Context Modeling, the encoder should calculate
context index (ctxIdx) from 0 to 459 With ctxIdx as memory
address, it can get probability state (pStateIdx) and Most
Probable Symbol (MPS) from context table. The pStateIdx is
in range from 0 to 63, and MPS is either 0 or 1. CABAC
provides two equations to calculate ctxIdx. Except for syntax
element coded_block_flag, last_significan_flag,
significan_flag and coeff_abs_level_minus1, eq (1) is used
for calculating ctxIdx. Otherwise, eq (2) is used.

ctxIdx = ctxIdxOffset + ctxIdxInc (1)

ctxIdx = ctxIdxOffset + ctxIdxInc + ctxCatOffset (2)

In (1) and (2), both of ctxIdxOffset and ctxCatOffset are
constant for calculating ctxIdx. The ctxIdxInc is calculated
from the information of neighbor macroblock

2.3. Arithmetic Coding

Fig. 1 shows the flow diagram of AC encoding for a
given bin value, binVal, in the Decision mode. AC is
consisted of three parts, (1) Interval Maintainer, (2)
Probability Updating and (3) Renormalization.

Interval maintainer

MPS

Renormalization

binVal != MPS

PSTATE

bit-stream

LPS probability update MPS probability update

Y N

Interval maintainer

MPS

Renormalization

binVal != MPS

PSTATE

bit-stream

LPS probability update MPS probability update

Y N

Fig. 1 Flow diagram of arithmetic coding

3 THE PROPOSED FLOW AND ARCHITECTURE
3.1 The Proposed Algorithm Flow and Architecture

In [3], they rearrange the overall CABAC flow into four
stages as shown in Fig. 2(a). The number in front of each
block means the coding order. With help of software analysis,

first, we find that ctxIdx calculation is depended on previous
binVal not current ones. So, we can process binarization and
context generation in parallel. Secondly, to read pstateIdx
and MPS from context memory and update them at the same
time, a dual-port memory is adopted here to increase
encoding speed. With this approach, the encoding iteration
can be reduced from 5 to 3-4 cycles as shown in Fig. 2(b)
and architecture is easier to be pipelined into three stages as
in Fig. 3.

Binarization1

Context range generation
/context table access2

Prob check/BAC
/range table access2

Bit-stream update1 Binarization1 Binarization1

Context range generation
/context table access2 Context range generation
/context table access2

Prob check/BAC
/range table access2 Prob check/BAC
/range table access2

Bit-stream update1 Bit-stream update1

(a)

Binarization1 Binarization1Context index generation1 Context index generation1

Bit-stream update1 Bit-stream update1

Binary arithmetic codingBinary arithmetic codingRange table accessRange table access

Probability update1 Probability update1

output

SE

AC

bitPacking

Context memory
read

write

(b)

Fig. 2 (a) Original serial schedule of CABAC. (b) Modified
parallel algorithm for CABAC

In the first stage of CABAC as in Fig.3, the binarization
stage will output the bin-string to second stage and context
memory will be updated and output ctxIdx for AC at the
same time. However, if the ctxIdx are the same for the
successive processing, a stall signal should be added to
avoid pstateIdx be read out before updating. This is the
reason why proposed iteration is 4. The second stage is AC,
it takes responsibility for calculating interval and output bit-
stream. The last stage is FIFO, it collects data from AC.
Because output wordlength of bit-stream varies from 0 to 2
Bytes, a FIFO is needed.

Context INIT

RAM – Context State

Arithmetic coder

STAGE 1 STAGE 2 STAGE 3

FIFOFIFO

Binarizer &context idx

Mode Controller

SE

Fig. 3 Pipelined CABAC encoding flow

II 106

3.2 Architecture of Binarization
In the binarization stage, although there are four

schemes, it can be simply reduced into two types. In which,
we classify U, TU and FL schemes into the table based type
because they are easier to be realized by combinational logic,
On the other hand, the table based UEGk will cost a lot due
to the large table. To minimize the table cost, we use the
arithmetic method to calculate it by adapting the table
partition introduced in [2]. Thus, we use the parameter
“base” to find the partition block and a carry save adder
(CSA) to calculate its suffix. The proposed architecture is
showed in Fig. 4.

Base LUT

abs_mis1

CSA

cMax

+- -
Prefix Gen

Base

binVal-Suffix

TABLE_SuffixTABLE_Pefix

SE

binVal-Prefix

mb_type_val
Const Table UEGK encoder

C0

Fig. 4 Architecture of Binarization

3.3 Architecture of Context Modeling

The architecture of context modeling is showed as Fig.
5. As mentioned above, we adopted a dual-port memory for
context memory. Besides, the probability updating is
extracted from AC, because it depends on values of
pstateIdx and MPS, but does not depend on codIRange and
codILow. Further more, transition table of MPS is reduced
into simple one by its regular characteristic.

Fig. 5 Architecture of Context Modeling

3.4 Architecture of AC

Fig. 6 showed the architecture of AC. There are two
loops in AC [1]. One is controlled by codIRange and the
other one is controlled by bitsOutStanding. To speed up the
first loop, we skip the successive one by the Leading-Zero
Detector (LZD) and Barrel-shifter to generate new interval.
At the same time the output of LZD will be sent to FSM to
calculate the renormalization. The idea for the second loop
speedup is by bit-parallelism as described below.

Fig. 6 Architecture of AC

3.4.1 Interval maintainer in AC
For the sake to maximize hardware sharing, we analyze

codILow, and codIRange between three modes as shown in
Table 1. Here, we can find no matter which mode is selected,
codILow will involve a three input adder (when binVal is
equal to MPS or equal to 0). Thus we use a carry-save adder
to compute new codILow to save hardware. This adder also
help calculate codIRange, since binVal is equal to zero and
binVal is non-equal to zero will not happen at the same time
when mode was on termination. After this calculation, the
interval will be sent to renormalization. The proposed
architecture is showed in Fig. 7.

Table 1 Optimized codIRange and codILow

Figure 7 Architecture of Interval Maintainer

II 107

3.4.2 Renormalization in AC
When renormalization is happened, [1] uses adder for

updating codILow. However, with a detailed analysis, we
can find that codILow is just trying to eliminate its MSB
when codIRange is less than 0x100. Thus, to minimum the
hardware cost, we adopt a FSM instead of adders. After that,
BitsPacking in the renormalization will receive the bit-
stream from AC and pack them in byte. Within BitsPacking,
bitsOutstading has to solve the carry over problem that
requires a loop to output data. To break such multi-cycle
operations, we use two masks to generate output data in
parallel. With such bit-parallelism, we can process this loop
in one cycle. Fig. 8 shows the architecture of the
renormalization stage.

Renormalization

Re_codIRange Re_codILow

LZD
Barrel-shifter

FSM

Mask Gen

BitsPacking

FIFOFIFO

codIRange_next codILow_next

Output Stage

Fig. 8 Architecture of Renormalization

4 EXPERIMENTAL RESULT
The proposed pipeline CABAC has been synthesized

from Verilog-HDL description with INCENTIA by using
0.15um CMOS standard cell library. Without considering
memory size, the proposed design uses 13.3k gate counts,
achieves 333MHz, and takes 1.8 cycles for calculating a bin.
Table 2 shows comparisons between conventional and
proposed designs for different video size. As an effect of
proposed approaches, computing time is saved by more than
9% between different parts of test sequence. Table 3
presents the comparison with previous works. It is
obviously that our design uses the least gate count because
the modified algorithm in binarization and AC saves large
tables and several combinational logics. Moreover, [5] only
implements AC, and [4] only implements AC and parts of
binarization. In summary, our design is more complete than
these two designs.

Table 3. The hardware cost comparison with previous

works
 Ours [4] [5]
Process 0.15um 0.35um 0.18um
Operating
Frequency

333MHz 186MHz 400MHz

Gate
Count

13.3K 19.4K 44k

5 CONCLUSION
This paper has described a hardware efficient pipeline

CABAC architecture, which exhibits low cost, low latency
and high throughput. Experimental results show that our
design is adequate for HDTV applications with the proposed
optimization.

REFERENCES
[1] Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification (ITU-T Rec. H.264/
ISO/ IEC 14496-10 AVC), Mar. 2003

[2] Marpe. D, Schwarz. H, Wiegand. T, “Context-based adaptive
binary arithmetic coding in the H.264/AVC video
compression standard,” IEEE Transactions on Circuits and
Systems for Video Technology, Volume 13, Issue 7, July 2003
p.p 620 – 636.

[3] Ha. V.H.S, W. S. Shim, and J. W. Kim, “Real-time MPEG-4
AVC/H.264 CABAC entropy coder,” in International
Conference on Consumer Electronics Digest of Technical
Papers, p.p 255 - 256 , Jan. 8-12, 2005

[4] R. R. Osorio, and J. D. Bruguera, “High-Throughput
Architecture for H.264/AVC CABAC Compression System,”
to be published in IEEE Transaction on Circuits and Systems
for Video Technology

[5] C. H. Tsai, Y. J. Chen, and L. G. Chen, “Analysis and
Architecture Design for Multi-Symbol Arithmetic Encoder in
H.264/AVC,” in Proceedings of 2005 SOC Design
Conference, Seoul, Korea, October 2005.

Table 2 Processing Bins of Different Number of Candidates

 HDTV(1280x720) @30 CIF(352x288) @30 QCIF(176x144) @30
Test sequence parkrun Stockholm foreman news container akiyo
Frame Number 400 500 300 300 300 300
cycles of Conventional 404168707 217089946 46464619 55354588 17288399 12337802
cycles of Proposed 363034386 196122497 41685936 49620501 15475896 11154008
Saving Cycles % 10.18% 9.66% 10.29% 10.36% 10.48% 9.59%

II 108

