
ALGORITHMIC LEVEL DESIGN SPACE EXPLORATION TOOL FOR
CREATION OF HIGHLY OPTIMIZED SYNTHESIZABLE CIRCUITS

Nazish Aslam1, 2, Tughrul Arslan1, 2, 3, Ahmet Erdogan1, 2, 3
1: Institute for System Level Integration, Livingston, UK

2: Spiral Gateway Ltd, Edinburgh, UK
3: University of Edinburgh, Edinburgh, UK

ABSTRACT

This paper presents some of the results obtained by using a
prototype algorithmic level design space exploration tool currently
under development. The tool is based upon multi-objective
evolutionary algorithms. The paper highlights the tool’s benefits
and discusses its current abilities in terms of its experimental
applications.

Index Terms— design automation, high-level synthesis,
multi-objective, evolutionary algorithms

1. INTRODUCTION

In order to cope with the design productivity gap [1], more novel
tools are needed. The current options available to a designer are to
employ a very reuse-centric methodology, which includes block-
based or platform-based design methodologies. These
methodologies significantly reduce the design time by promoting
extensive reuse of a design and its associated verification IP.
However design-for-reuse result in suboptimal designs as they
introduce a lot of redundancies in order to accommodate for the
increased flexibility of the IP. Another approach to deal with the
productivity gap has been to shift to higher levels of abstraction for
the design implementation. This is already achievable with today’s
commercial tools such as Catapult C from Mentor Graphics [2] or
System Generator from Xilinx [3]. These tools reduce the number
of ‘over-the-wall’ [4] passes of a design, thus reducing the number
of chances for inconsistencies to creep in into the design flow.
Furthermore they can also decrease the design time needed as none
or very limited RT-level designing is needed by hand. However the
limitation is that the final design created is most likely non-
optimal. Taking the Catapult C tool as an example, the basic idea is
that the designer takes a hardware system specification and creates
a detailed design for it in C high-level language. Once ready, the
Catapult C tool would directly map the C into synthesizable RTL
and perform some limited optimizations thereafter; which can then
be taken through the standard synthesis and place-and-route tools.
The C behavioral model created by the designer is the design that
is almost directly mapped into RTL by the tool. There may still be
a need for several ‘what-if’ [2] design iterations to achieve timing
convergence, and also further optimization.

An EDA tool currently under development by our group aims
to significantly reduce the design time for digital circuits yet also
simultaneously produce highly optimized designs for the situation
in hand, by performing a comprehensive design space exploration

at the algorithm level. This facility is currently not provided by any
of the commercially available EDA tools.

Research into creating similar tools is being undertaken by
other groups as well. One example of an automated tool is SPIRAL
[12]. SPIRAL automatically generates platform-tuned software
implementations of linear DSP transforms, where the aim is to find
the fastest implementation of a transform for the targeted processor
from a given high-level circuit specification. This tool uses the idea
that a single DSP transform may be represented by a large number
of different, but mathematically equivalent, formulae. It is
observed that when these formulae are implemented in code, their
runtime differ significantly. Thus SPIRAL uses a Signal
Processing Language (SPL) to input a formula representing the
desired transform, which is translated to C code using an SPL
compiler. This formula is modified by applying different
breakdown and manipulation rules, and the code generated using
the SPL compiler. This process can be repeated to create more
circuits and evaluated for the fastest.

Many other related works include ongoing research by several
groups on Genetic Algorithm (GA)-based exploration tools. These
tools differ from each other by having novel algorithm
implementations, or unique chromosome encoding methods, etc.
One very recent example of a similar tool to ours is of Krishnan
and Katkoori [13], who have created a tool for generating several
structural RTL netlists for a given linear DSP transform by
performing design space exploration. However our works differ in
how we structure our GAs; for example our implementation uses
Pareto-analysis and a novel niching algorithm to avoid the hill-
climbing problem.

This paper gives an introduction to our prototype tool and
presents some of its experimental applications and outcomes. The
paper aims to highlight the potential of the tool as well as discuss
the future direction.

2. PROPOSED EDA TOOL CAPABILITIES

As [5] acknowledge, any modifications made at the behavioral
level of a design are much more effective and easier than at RT-
level. The goal of developing this tool is to take advantage of this
concept and produce high quality digital hardware designs by
performing a comprehensive design space exploration at the
algorithm level. Furthermore, the tool also aims to drastically
reduce the required design time by almost completely eliminating
the need to perform any detailed designing of the system at all. The
tool aims to produce highly optimized synthesizable circuits from
simply reading in a specification for the desired system presented

II ­ 811­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

by some formal specification method. The specification may be
specified in a high-level language, such as C, or perhaps by even
using some mathematical equations accompanied by some
constraints which could fully and accurately specify the required
design. At the moment, the high-level behavioral specification is
presented in a mathematical form to the tool. A matrix is used to
specify the transform to be implemented and some numerical
values are also provided to specify, for example, the number of
input and output ports of the circuit with their respective bit-
widths. Using a mathematical form of specification ensures that it
is treated purely as a specification and not as the baseline design
for the digital system, which could inherently limit the possible
optimizations for the circuit.

Our proposed tool performs circuit creation and circuit
optimization simultaneously during the evolution process. Thus
any design decisions taken during circuit construction also consider
the effects it may have on the circuit’s optimization.

It is almost always difficult to select only one implementation
of a given circuit and identify it as optimal, since depending upon
the requirements of the situation in hand, a different
implementation may be considered to be better. For example, a
serial, low area FFT may be good for one situation while a high
speed parallel FFT better suited for another. Due to the often
conflicting design parameters, optimizing for one parameter can
make the other parameter(s) worse. Hence, being able to multi-
objectively evaluate across several dimensions and preserve all the
functionally accurate designs that give varying amounts of
optimizations for each dimension can be very useful. Currently the
tool aims to optimize across three different dimensions, namely the
quantization error, area and longest-path delay. However,
additional design dimensions, such as power and testability can
also be integrated if suitable characterization metrics and
evaluation algorithms are devised. Integrating with other EDA
tools for power analysis, and particularly pre-synthesis floor-
planning to allow for accurate estimation of delays, is also feasible
as the prototype tool can seamlessly integrate with existing
commercial tools of any design flow.

3. EDA TOOL IMPLEMENTATION

The prototype tool has been developed by members of the research
group and its various algorithms are described in depth in [6], [7]
and [8]. A brief overview of the tool’s implementation is given
here. The tool is based on novel multi-objective evolutionary
algorithms along with some complex heuristics. It utilizes a
powerful (+) multi-member evolutionary strategy. The tool
uses a search strategy which offers a compromise between the
search area coverage (hence the time the tool takes to run) and the
number of unique solutions found. A high level view of how the
algorithm behaves is shown in Figure 1.

The tool starts by creating an initial predetermined size pool
of very simple designs where every output of the desired circuit is
connected to randomly chosen input. This initial population will
now pass through various mutation and evaluation phases to
generate circuits satisfying the input circuit specification. Each
individual design’s information is encoded by a directed graph.
The entire population is multi-objectively evaluated by performing
a non-dominated Pareto analysis; Pareto analysis allows measure
of fitness that is not biased towards any particular optima [11]. The
Pareto analysis sorts the individual designs according to their

fitness, where fitness is basically measured in terms of the design’s
performance in all chosen objective functions. The tool currently
uses the error in the circuit’s response, silicon area and longest-
path delay objectives for the fitness calculations. The functional
correctness is currently being characterized by means of
calculating the n-dimensional Euclidean distance between the
evolved circuits behavior against the desired mathematical
description of the circuit, where n is the number of inputs of the
circuit. The evolved system’s response is currently being obtained
by calculating its impulse response.

However this verification method is time-consuming to
perform with respect to the time used for actual evolution of the
designs, thus the next project goal would be to transform the input
specification along with the evolved circuits into some canonical
representation and perform an equivalence check of the two to
ensure that the behaviors of the two are converging.

New designs are formed by performing a mutation on some of
the existing designs of the population. When mutating, depending
upon the level of functional correctness, the tool invokes the
appropriate heuristics algorithm and attempts to make changes
which would be more probable to reduce the error significantly. As
each design is being represented by a direct graph, there are only a
handful of mutations which can take place. These include the
addition of a new component, removal of an existing component,
modification of a connection, or modification of a shift or negation
associated with a wire or component respectively. These mutations
are applied according to the embedded heuristics algorithms in the
tool. Further mutations may be introduced at a later stage.

Evaluation is again performed on the newly evolved
intermediate population. As the original population is also
contained in the intermediate population, enough designs have to
be discarded to ensure that the population size does not spiral out
of control over thousands of generations. This process of
discarding designs is critical to ensure that promising designs are
not lost during the course of evolution, yet good diversity is

Initialize

Pool of
designs; aka
population

Evaluate
population

Create new
designs by
mutation

Display all
solutions

Stop?

Copy pool
of designs

Intermediate
population

Copy best
solutions

Evaluate
population

Selection
process

Yes

Seed value

No

Fig. 1. High level flow chart of the SDA algorithm.

II ­ 82

maintained in the population at all times to avoid the hill-climbing
problem as much as possible. Thus, elitism has been implemented
to ensure that a small number of the fittest individuals are
preserved to guarantee that the following generations do not
become inferior. The remaining designs of the population which
are not elite go through a size-2 tournament selection process. The
selection process is aided by an efficient niching algorithm which
has been developed in an attempt to avoid premature convergence
of the designs by introducing diversity in the population at a
greater scale. It attempts to discriminate between the different
designs on the Pareto-surface so to avoid convergence towards a
single cluster of solutions near one area of the Pareto-surface. This
process of evolving designs is repeated until a preset criterion is
met for halting the search. The concept of seed value has been
implemented so that the paths taken during the evolution process
can be regenerated to obtain the same designs again for a given
input specification.

Currently the area and longest-path delay values are obtained
solely from the component information and the effects of wiring
are being ignored which results in inaccurate estimates, as with
Deep Submicron technologies, the effect of wiring has become
significant [5]. However this aspect of the tool can be improved at
a later stage independently from the actual evolving aspect of the
tool. The main focus of the existing research has been to create a
prototype tool which can comprehensively explore a design space
at the algorithmic level for a given design specification.

4. EXAMPLE EXPERIMENTAL DESIGNS

Previous applications of the tool were limited to low complexity
circuits, mainly simple FIR filters. However after modifying some
heuristics algorithms and introducing new procedures to apply
mutations at different probabilities according to the size of the
input specification, the tool is tested with more complex circuits. In
its current state, the tool is found to be capable of automatically
generating dedicated datapath designs of low to medium
complexity for linear DSP transforms. The control for these
designs can be automatically generated using conventional
techniques. A varied version of the tool is also under development
[14] to handle non-linear DSP transforms; however the details of it
are not covered in this paper.

The designs for 2D Discrete Cosine Transform (DCT) and a
parallel 16-point complex Fast Fourier Transform (FFT) have been
implemented. Both these transforms are compute-intensive and
extensively used in many applications, particularly in the discipline
of digital image and signal processing. The RTL netlist for a 2D
integer-based DCT/IDCT module was automatically generated
which is used as part of a H.264/MPEG4 video coding IP [9]. The
tool created this in a matter of a few minutes with a simple
switching mechanism implemented between the two. Several
versions of circuitry were simultaneously created, each offering
different trade-offs between the area and longest-path delay
objectives. Given that the DCT/IDCT is integer-based, the
specified behavior of the circuit was expected to be fully met with
zero tolerance.

Figure 2 illustrates the range of solutions found by the
prototype tool for the 4x4 DCT module, and as may be seen, only
one of all these designs lay on the Pareto-surface. Similar varieties
of designs were generated for the IDCT module as well. This
resulted in one ‘best’ design in terms of both the area and the

longest-path delay for the combined DCT/IDCT module. The
design for the entire DCT/IDCT module was synthesized using
BuildGates tool from Cadence targeting UMC 0.18 m CMOS
technology library. Power results were obtained with Synopsys
Design Power by monitoring the switching activities of the design
through the gate-level simulation.

The area and delay results for the best DCT/IDCT design
found through performing the time-limited design space
exploration was next compared against a manually written and
optimized DCT/IDCT module as shown in Table 1. The manual
creation of the DCT/IDCT module involved deriving a detailed
design and implementing it in Verilog HDL. A testbench was also
developed to verify the module meets the specification. Upon
performing the comparison, it was found that the time required for
the creation of such a highly optimized design compared to the
manual DCT/IDCT was drastically reduced while no engineering
effort was needed to even think about the detailed design at all.
Furthermore the creation of a testbench was not compulsory for the
automated solution since the solution has already been verified by
the tool to exactly meet the specification. The DCT/IDCT
coefficients were simply fed into the tool in the form of a matrix,
along with the required number of inputs, outputs and their
respective widths, and the prototype tool created a range of designs
automatically.
Table 1. Comparison of manual and automatically generated
DCT/IDCT modules

 Area, m2 Delay, ns Power,
mW

Approx.
effort

Manual
solution

353004.68 3.08 14.976 6 working
days

Automated
solution 272279.72 3.48 8.741 40 minutes

The longest-path delays are similar, however, a significant
improvement was observed in the area and power consumption of
the automatically generated design compared to the manual one.
The significant savings observed are due to the fact that the tool
made selective use of its own custom IP for all the primitive
operators and was able to choose and arrange these operators in
such a manner that would feel unnatural for a human to derive
manually. This example shows the tools ability to create a highly
optimized design from its specification in the fraction of the time it
took an engineer to create an optimized design for the 2D
DCT/IDCT using conventional tools; hence resulting in
significantly reduced manpower requirement and design time.

A parallel 16-point complex FFT was also created for a MC-
CDMA receiver [10] using the prototype tool. It is a 32-bit FFT
implemented in radix-4. Again, the entire design was automatically
generated using the prototype tool. The tool was able to generate

4x4 DCT Module

3

4

5

6

7

8

9

100000 120000 140000 160000 180000 200000
Area (um^2)

D
el

ay
 (n

s)

Fig. 2. All functionally accurate designs generated for
the DCT module by the prototype tool

II ­ 83

several different solutions providing differing trade-offs between
area and longest-path delay in a matter of a few hours. This has
resulted in the possibility of having several different FFT
implementations, all of which give varying amounts of overall area
and delay trade-offs. All these different solutions are available in
their RTL form to be used, if required. Say the engineer chooses
one version of the FFT implementation, however, after going
through the latter stages of the design flow, wishes to try out the
‘what-if’ scenario, it is simply a matter of selecting one of the other
already implemented designs and taking them through the latter
stages. No further time has to be spent on redesigning and re-
verifying new RTL implementations, and all the other designs are
guaranteed to give varying performances in terms of area and
delay, while remaining functionally accurate.

Once again the designs were synthesized targeting UMC
0.18 m CMOS technology library and the power consumption
estimated using the Synopsys Design Power tool. After letting the
tool run for a few hours, a range of solutions were generated
offering varying trade-offs between quantization error, area and
delay. Next, an equivalent FFT was manually created, along with a
testbench, to ensure that the initial specification is met. The
performance of two automatically generated solutions, where one
gave the best area results while the other gave the least delay, were
compared against the manual solution; See Table 2. Note that the
chosen automated designs give similar quantization errors as the
manual solution.
Table 2. Comparison of manual and automatically generated
16-point, 32-bit complex FFT modules

 Area, m2 Delay, ns Power,
mW

Approx.
effort

Manual
solution

937388.86 8.39 191.311 15 working
days

Automated
solution (1) 377661.62 6.02 42.454

Automated
solution (2) 449333.96 4.22 48.520

4 hours

The prototype tool was able to offer these two extreme
solutions, along with several others which lie in between these two
extremes in a matter of a few hours. Running the tool for longer
allows a larger design space to be explored and potentially generate
designs with an even higher performance than those identified
already. As can be seen from Table 2, the best automated solutions
found far exceeded the performance of the manual solution, yet
taking only a fraction of the time to create. The significant area
decrease observed between the manual and automated solutions is
a result of the prototype tool making use of primitive operators
such as addition, subtraction, negation and bit-shifting, to generate
the complex multipliers whereas the manual solution was created
using a standard booth multiplier module to perform the
multiplications. A several fold reduction was also observed in the
power consumption of the manual and automated solutions. It is
mention worthy again that the prototype tool does not currently use
power as one of the multiple objectives which it tries to optimize,
however this can be included if appropriate characterization
metrics are built into the tool. The current power savings
experienced are due to the novel low power primitive operators
used by the tool, and also due to the reduction in the design areas
which inherently lowers the power consumption of a design. It
should also be noted that the same synthesis constraints were
specified for the synthesis of the automated and manual solutions.

5. CONCLUSIONS
The paper established the need for new tools to cope with the
challenges facing today’s engineers. The tool under development
which exploits the benefits of performing design space exploration
at the algorithm level could have a substantial impact on improving
the performance of systems while significantly reducing the NRE
costs and design-time simultaneously. Efficient DCT and FFT
implementations have been created using the prototype tool with
their performance comparable to manually created solutions,
showing the steady progress towards achieving the proposed aims.

6. REFERENCES
[1] International Technology Roadmap for Semiconductors 2001
[2] McCloud, S. Mentor Graphics, Catapult C Synthesis Based
Design Flow: Speeding Implementation and Increasing Flexibility
October 2003
[3] Ownby, M. and Mahmoud, W. H., A Design Methodology for
Implementing DSP with Xilinx System Generator for Matlab,
Proceedings of the 35th Southeastern Symposium on System
Theory 2003, pp. 404-408
[4] Synopsys white paper, Achieving DFT Closure – The Next Step
in Design for Test October 2001
[5] Wakabayashi, K. and Okamoto, T., C-Based SoC Design Flow
and EDA Tools: An ASIC and System Vendor Perspective, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 19, No. 12, December 2000
[6] Thomson, R. and Arslan, T., Evolvable Hardware for the
Generation of Sequential Filter Circuits, NASA/DoD Conference
on Evolvable Hardware 2002 Proceedings

[7] Thomson, R. and Arslan, T. An Evolutionary Algorithm for the
Multi-objective Optimisation of VLSI Primitive Operator Filters
Congress on Evolutionary Computation 2002
[8] Thomson, R. and Arslan, T. On the impact of Modelling,
Robustness, and Diversity to the performance of a Multi-Objective
Evolutionary Algorithm for Digital VLSI System Design The
Congress on Evolutionary Computation, 2003
[9] Kneip, J., Schmale B. and Moller H. Applying and
Implementing the MPEG-4 Multimedia Standard Micro IEEE, Vol.
19, Issue 6, Nov 1999, pp. 64-74
[10] Hasan, M., Arslan, T. and Thonpson, J. A Novel Low Power
Pipelined Architecture for a MC-CDMA Receiver Proceedings of
the 3rd International Symposium on Image and Signal Processing
and Analysis ISPA 2003, pp. 1048-1053
[11] Goldberg, D.E. Genetic Algorithms in Search, Optimization
and Machine Learning Addison-Wesley 1989
[12] Puschel, M., Moura, J.M.F., Johnson, J.R., Padua, D., et al,
SPIRAL: Code Generation for DSP Transforms IEEE Proceedings
Vol. 93, No.2, pp. 232-275, Feb 2005
[13] Krishnan, V., Katkoori, S., A Genetic Algorithm for the
Design Space Exploration of Datapaths During High-Level
Synthesis IEEE Transactions of on Evolutionary Computation,
Vol. 10, No. 3, pp. 213-229, Jun 2006
[14] Thomson, R., Arslan, T. The Evolutionary Design and
Synthesis of Non-Linear Digital VLSI Systems NASA/Dod
Conference on Evolvable Hardware Proceedings 2003

II ­ 84

