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ABSTRACT 

This paper presents some of the results obtained by using a 
prototype algorithmic level design space exploration tool currently 
under development. The tool is based upon multi-objective 
evolutionary algorithms. The paper highlights the tool’s benefits 
and discusses its current abilities in terms of its experimental 
applications. 
 

Index Terms— design automation, high-level synthesis, 
multi-objective, evolutionary algorithms 
 
 

1. INTRODUCTION 
 
In order to cope with the design productivity gap [1], more novel 
tools are needed. The current options available to a designer are to 
employ a very reuse-centric methodology, which includes block-
based or platform-based design methodologies. These 
methodologies significantly reduce the design time by promoting 
extensive reuse of a design and its associated verification IP. 
However design-for-reuse result in suboptimal designs as they 
introduce a lot of redundancies in order to accommodate for the 
increased flexibility of the IP. Another approach to deal with the 
productivity gap has been to shift to higher levels of abstraction for 
the design implementation. This is already achievable with today’s 
commercial tools such as Catapult C from Mentor Graphics [2] or 
System Generator from Xilinx [3]. These tools reduce the number 
of ‘over-the-wall’ [4] passes of a design, thus reducing the number 
of chances for inconsistencies to creep in into the design flow. 
Furthermore they can also decrease the design time needed as none 
or very limited RT-level designing is needed by hand. However the 
limitation is that the final design created is most likely non-
optimal. Taking the Catapult C tool as an example, the basic idea is 
that the designer takes a hardware system specification and creates 
a detailed design for it in C high-level language. Once ready, the 
Catapult C tool would directly map the C into synthesizable RTL 
and perform some limited optimizations thereafter; which can then 
be taken through the standard synthesis and place-and-route tools. 
The C behavioral model created by the designer is the design that 
is almost directly mapped into RTL by the tool. There may still be 
a need for several ‘what-if’ [2] design iterations to achieve timing 
convergence, and also further optimization.  

An EDA tool currently under development by our group aims 
to significantly reduce the design time for digital circuits yet also 
simultaneously produce highly optimized designs for the situation 
in hand, by performing a comprehensive design space exploration 

at the algorithm level. This facility is currently not provided by any 
of the commercially available EDA tools.  

Research into creating similar tools is being undertaken by 
other groups as well. One example of an automated tool is SPIRAL 
[12]. SPIRAL automatically generates platform-tuned software 
implementations of linear DSP transforms, where the aim is to find 
the fastest implementation of a transform for the targeted processor 
from a given high-level circuit specification. This tool uses the idea 
that a single DSP transform may be represented by a large number 
of different, but mathematically equivalent, formulae. It is 
observed that when these formulae are implemented in code, their 
runtime differ significantly. Thus SPIRAL uses a Signal 
Processing Language (SPL) to input a formula representing the 
desired transform, which is translated to C code using an SPL 
compiler. This formula is modified by applying different 
breakdown and manipulation rules, and the code generated using 
the SPL compiler. This process can be repeated to create more 
circuits and evaluated for the fastest.  

Many other related works include ongoing research by several 
groups on Genetic Algorithm (GA)-based exploration tools. These 
tools differ from each other by having novel algorithm 
implementations, or unique chromosome encoding methods, etc. 
One very recent example of a similar tool to ours is of Krishnan 
and Katkoori [13], who have created a tool for generating several 
structural RTL netlists for a given linear DSP transform by 
performing design space exploration. However our works differ in 
how we structure our GAs; for example our implementation uses 
Pareto-analysis and a novel niching algorithm to avoid the hill-
climbing problem.  

This paper gives an introduction to our prototype tool and 
presents some of its experimental applications and outcomes. The 
paper aims to highlight the potential of the tool as well as discuss 
the future direction. 
 

2. PROPOSED EDA TOOL CAPABILITIES 
 
As [5] acknowledge, any modifications made at the behavioral 
level of a design are much more effective and easier than at RT-
level. The goal of developing this tool is to take advantage of this 
concept and produce high quality digital hardware designs by 
performing a comprehensive design space exploration at the 
algorithm level. Furthermore, the tool also aims to drastically 
reduce the required design time by almost completely eliminating 
the need to perform any detailed designing of the system at all. The 
tool aims to produce highly optimized synthesizable circuits from 
simply reading in a specification for the desired system presented 
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by some formal specification method. The specification may be 
specified in a high-level language, such as C, or perhaps by even 
using some mathematical equations accompanied by some 
constraints which could fully and accurately specify the required 
design. At the moment, the high-level behavioral specification is 
presented in a mathematical form to the tool. A matrix is used to 
specify the transform to be implemented and some numerical 
values are also provided to specify, for example, the number of 
input and output ports of the circuit with their respective bit-
widths. Using a mathematical form of specification ensures that it 
is treated purely as a specification and not as the baseline design 
for the digital system, which could inherently limit the possible 
optimizations for the circuit. 

Our proposed tool performs circuit creation and circuit 
optimization simultaneously during the evolution process. Thus 
any design decisions taken during circuit construction also consider 
the effects it may have on the circuit’s optimization. 

It is almost always difficult to select only one implementation 
of a given circuit and identify it as optimal, since depending upon 
the requirements of the situation in hand, a different 
implementation may be considered to be better. For example, a 
serial, low area FFT may be good for one situation while a high 
speed parallel FFT better suited for another. Due to the often 
conflicting design parameters, optimizing for one parameter can 
make the other parameter(s) worse. Hence, being able to multi-
objectively evaluate across several dimensions and preserve all the 
functionally accurate designs that give varying amounts of 
optimizations for each dimension can be very useful. Currently the 
tool aims to optimize across three different dimensions, namely the 
quantization error, area and longest-path delay. However, 
additional design dimensions, such as power and testability can 
also be integrated if suitable characterization metrics and 
evaluation algorithms are devised. Integrating with other EDA 
tools for power analysis, and particularly pre-synthesis floor-
planning to allow for accurate estimation of delays, is also feasible 
as the prototype tool can seamlessly integrate with existing 
commercial tools of any design flow. 
 

3. EDA TOOL IMPLEMENTATION 
 
The prototype tool has been developed by members of the research 
group and its various algorithms are described in depth in [6], [7] 
and [8]. A brief overview of the tool’s implementation is given 
here. The tool is based on novel multi-objective evolutionary 
algorithms along with some complex heuristics. It utilizes a 
powerful (  + ) multi-member evolutionary strategy. The tool 
uses a search strategy which offers a compromise between the 
search area coverage (hence the time the tool takes to run) and the 
number of unique solutions found. A high level view of how the 
algorithm behaves is shown in Figure 1.  

The tool starts by creating an initial predetermined size pool 
of very simple designs where every output of the desired circuit is 
connected to randomly chosen input. This initial population will 
now pass through various mutation and evaluation phases to 
generate circuits satisfying the input circuit specification. Each 
individual design’s information is encoded by a directed graph. 
The entire population is multi-objectively evaluated by performing 
a non-dominated Pareto analysis; Pareto analysis allows measure 
of fitness that is not biased towards any particular optima [11]. The 
Pareto analysis sorts the individual designs according to their 

fitness, where fitness is basically measured in terms of the design’s 
performance in all chosen objective functions. The tool currently 
uses the error in the circuit’s response, silicon area and longest-
path delay objectives for the fitness calculations. The functional 
correctness is currently being characterized by means of 
calculating the n-dimensional Euclidean distance between the 
evolved circuits behavior against the desired mathematical 
description of the circuit, where n is the number of inputs of the 
circuit. The evolved system’s response is currently being obtained 
by calculating its impulse response. 

However this verification method is time-consuming to 
perform with respect to the time used for actual evolution of  the 
designs, thus the next project goal would be to transform the input 
specification along with the evolved circuits into some canonical 
representation and perform an equivalence check of the two to 
ensure that the behaviors of the two are converging.  

New designs are formed by performing a mutation on some of 
the existing designs of the population. When mutating, depending 
upon the level of functional correctness, the tool invokes the 
appropriate heuristics algorithm and attempts to make changes 
which would be more probable to reduce the error significantly. As 
each design is being represented by a direct graph, there are only a 
handful of mutations which can take place. These include the 
addition of a new component, removal of an existing component, 
modification of a connection, or modification of a shift or negation 
associated with a wire or component respectively. These mutations 
are applied according to the embedded heuristics algorithms in the 
tool. Further mutations may be introduced at a later stage.  

Evaluation is again performed on the newly evolved 
intermediate population. As the original population is also 
contained in the intermediate population, enough designs have to 
be discarded to ensure that the population size does not spiral out 
of control over thousands of generations. This process of 
discarding designs is critical to ensure that promising designs are 
not lost during the course of evolution, yet good diversity is 

Initialize 

Pool of 
designs; aka 
population 

Evaluate 
population 

Create new 
designs by 
mutation 

Display all 
solutions 

Stop? 

Copy pool 
of designs 

Intermediate 
population 

Copy best 
solutions 

Evaluate 
population 

Selection 
process 

Yes 

Seed value 

No 

Fig. 1. High level flow chart of the SDA algorithm.
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maintained in the population at all times to avoid the hill-climbing 
problem as much as possible. Thus, elitism has been implemented 
to ensure that a small number of the fittest individuals are 
preserved to guarantee that the following generations do not 
become inferior. The remaining designs of the population which 
are not elite go through a size-2 tournament selection process. The 
selection process is aided by an efficient niching algorithm which 
has been developed in an attempt to avoid premature convergence 
of the designs by introducing diversity in the population at a 
greater scale. It attempts to discriminate between the different 
designs on the Pareto-surface so to avoid convergence towards a 
single cluster of solutions near one area of the Pareto-surface. This 
process of evolving designs is repeated until a preset criterion is 
met for halting the search. The concept of seed value has been 
implemented so that the paths taken during the evolution process 
can be regenerated to obtain the same designs again for a given 
input specification.  

Currently the area and longest-path delay values are obtained 
solely from the component information and the effects of wiring 
are being ignored which results in inaccurate estimates, as with 
Deep Submicron technologies, the effect of wiring has become 
significant [5]. However this aspect of the tool can be improved at 
a later stage independently from the actual evolving aspect of the 
tool. The main focus of the existing research has been to create a 
prototype tool which can comprehensively explore a design space 
at the algorithmic level for a given design specification. 
 

4. EXAMPLE EXPERIMENTAL DESIGNS 
 
Previous applications of the tool were limited to low complexity 
circuits, mainly simple FIR filters. However after modifying some 
heuristics algorithms and introducing new procedures to apply 
mutations at different probabilities according to the size of the 
input specification, the tool is tested with more complex circuits. In 
its current state, the tool is found to be capable of automatically 
generating dedicated datapath designs of low to medium 
complexity for linear DSP transforms. The control for these 
designs can be automatically generated using conventional 
techniques. A varied version of the tool is also under development 
[14] to handle non-linear DSP transforms; however the details of it 
are not covered in this paper. 

The designs for 2D Discrete Cosine Transform (DCT) and a 
parallel 16-point complex Fast Fourier Transform (FFT) have been 
implemented. Both these transforms are compute-intensive and 
extensively used in many applications, particularly in the discipline 
of digital image and signal processing. The RTL netlist for a 2D 
integer-based DCT/IDCT module was automatically generated 
which is used as part of a H.264/MPEG4 video coding IP [9]. The 
tool created this in a matter of a few minutes with a simple 
switching mechanism implemented between the two. Several 
versions of circuitry were simultaneously created, each offering 
different trade-offs between the area and longest-path delay 
objectives. Given that the DCT/IDCT is integer-based, the 
specified behavior of the circuit was expected to be fully met with 
zero tolerance.   

Figure 2 illustrates the range of solutions found by the 
prototype tool for the 4x4 DCT module, and as may be seen, only 
one of all these designs lay on the Pareto-surface. Similar varieties 
of designs were generated for the IDCT module as well. This 
resulted in one ‘best’ design in terms of both the area and the         

longest-path delay for the combined DCT/IDCT module. The 
design for the entire DCT/IDCT module was synthesized using 
BuildGates tool from Cadence targeting UMC 0.18 m CMOS 
technology library. Power results were obtained with Synopsys 
Design Power by monitoring the switching activities of the design 
through the gate-level simulation.  

The area and delay results for the best DCT/IDCT design 
found through performing the time-limited design space 
exploration was next compared against a manually written and 
optimized DCT/IDCT module as shown in Table 1. The manual 
creation of the DCT/IDCT module involved deriving a detailed 
design and implementing it in Verilog HDL. A testbench was also 
developed to verify the module meets the specification. Upon 
performing the comparison, it was found that the time required for 
the creation of such a highly optimized design compared to the 
manual DCT/IDCT was drastically reduced while no engineering 
effort was needed to even think about the detailed design at all. 
Furthermore the creation of a testbench was not compulsory for the 
automated solution since the solution has already been verified by 
the tool to exactly meet the specification. The DCT/IDCT 
coefficients were simply fed into the tool in the form of a matrix, 
along with the required number of inputs, outputs and their 
respective widths, and the prototype tool created a range of designs 
automatically. 
Table 1.  Comparison of manual and automatically generated 
DCT/IDCT modules 

 Area, m2 Delay, ns Power, 
mW 

Approx. 
effort 

Manual 
solution 

353004.68 3.08 14.976 6 working 
days 

Automated 
solution 272279.72 3.48 8.741 40 minutes 

The longest-path delays are similar, however, a significant 
improvement was observed in the area and power consumption of 
the automatically generated design compared to the manual one. 
The significant savings observed are due to the fact that the tool 
made selective use of its own custom IP for all the primitive 
operators and was able to choose and arrange these operators in 
such a manner that would feel unnatural for a human to derive 
manually. This example shows the tools ability to create a highly 
optimized design from its specification in the fraction of the time it 
took an engineer to create an optimized design for the 2D 
DCT/IDCT using conventional tools; hence resulting in 
significantly reduced manpower requirement and design time. 

A parallel 16-point complex FFT was also created for a MC-
CDMA receiver [10] using the prototype tool. It is a 32-bit FFT 
implemented in radix-4. Again, the entire design was automatically 
generated using the prototype tool. The tool was able to generate 
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Fig. 2.  All functionally accurate designs generated for 
the DCT module by the prototype tool  
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several different solutions providing differing trade-offs between 
area and longest-path delay in a matter of a few hours. This has 
resulted in the possibility of having several different FFT 
implementations, all of which give varying amounts of overall area 
and delay trade-offs. All these different solutions are available in 
their RTL form to be used, if required. Say the engineer chooses 
one version of the FFT implementation, however, after going 
through the latter stages of the design flow, wishes to try out the 
‘what-if’ scenario, it is simply a matter of selecting one of the other 
already implemented designs and taking them through the latter 
stages. No further time has to be spent on redesigning and re-
verifying new RTL implementations, and all the other designs are 
guaranteed to give varying performances in terms of area and 
delay, while remaining functionally accurate.  

Once again the designs were synthesized targeting UMC 
0.18 m CMOS technology library and the power consumption 
estimated using the Synopsys Design Power tool. After letting the 
tool run for a few hours, a range of solutions were generated 
offering varying trade-offs between quantization error, area and 
delay. Next, an equivalent FFT was manually created, along with a 
testbench, to ensure that the initial specification is met. The 
performance of two automatically generated solutions, where one 
gave the best area results while the other gave the least delay, were 
compared against the manual solution; See Table 2. Note that the 
chosen automated designs give similar quantization errors as the 
manual solution. 
Table 2.  Comparison of manual and automatically generated 
16-point, 32-bit complex FFT modules 

 Area, m2 Delay, ns Power, 
mW 

Approx. 
effort 

Manual 
solution 

937388.86 8.39 191.311 15 working 
days 

Automated 
solution (1) 377661.62 6.02 42.454 

Automated 
solution (2) 449333.96 4.22 48.520 

4 hours 

The prototype tool was able to offer these two extreme 
solutions, along with several others which lie in between these two 
extremes in a matter of a few hours. Running the tool for longer 
allows a larger design space to be explored and potentially generate 
designs with an even higher performance than those identified 
already. As can be seen from Table 2, the best automated solutions 
found far exceeded the performance of the manual solution, yet 
taking only a fraction of the time to create. The significant area 
decrease observed between the manual and automated solutions is 
a result of the prototype tool making use of primitive operators 
such as addition, subtraction, negation and bit-shifting, to generate 
the complex multipliers whereas the manual solution was created 
using a standard booth multiplier module to perform the 
multiplications. A several fold reduction was also observed in the 
power consumption of the manual and automated solutions. It is 
mention worthy again that the prototype tool does not currently use 
power as one of the multiple objectives which it tries to optimize, 
however this can be included if appropriate characterization 
metrics are built into the tool. The current power savings 
experienced are due to the novel low power primitive operators 
used by the tool, and also due to the reduction in the design areas 
which inherently lowers the power consumption of a design. It 
should also be noted that the same synthesis constraints were 
specified for the synthesis of the automated and manual solutions. 

 

5. CONCLUSIONS 
The paper established the need for new tools to cope with the 
challenges facing today’s engineers. The tool under development 
which exploits the benefits of performing design space exploration 
at the algorithm level could have a substantial impact on improving 
the performance of systems while significantly reducing the NRE 
costs and design-time simultaneously. Efficient DCT and FFT 
implementations have been created using the prototype tool with 
their performance comparable to manually created solutions, 
showing the steady progress towards achieving the proposed aims. 
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