
MINIMIZING GLOBAL INTERCONNECT IN DSP SYSTEMS USING BYPASSING

Jennifer L. Wong

SUNY Stony Brook University
CS Department

Stony Brook, NY 11794

Seapahn Megerian

Univ. of Wisconsin, Madison
ECE Department

Madison, WI 53706

Miodrag Potkonjak

Univ. of California, Los Angeles
CS Department

Los Angeles, CA 90095

ABSTRACT

There is a wide consensus that performance and power con-

sumption of IC designs in deep submicron technologies is

mainly dictated by interconnect requirements. Our goal is

demonstrate how compilation and architectural techniques can

be used to minimize and balance interconnect requirements.

Specifically, we target the use of bypass units to reduce rout-

ing congestion and eliminate long interconnections while es-

sentially preserving or even improving the throughput require-

ments. We formulate the bypassing problem, establish its

complexity and develop an efficient integer-linear program-

ming (ILP) formulation. In addition to satisfying user spec-

ified interconnect requirements, we simultaneously optimize

the number of operations and, therefore runtime of the tar-

geted application.The approach is prototyped and evaluated

using a platform consisting of the Trimaran architecture and

compilation tools and the CPLEX ILP solver.

Index Terms— Circuit synthesis, Circuit optimization,

Digital Signal Processors, Multiprocessor interconnection

1. INTRODUCTION

Deep submicron technology is the key enabler of ultra large

integration, GHz clock speeds, and low power designs. At the

same time, technology progress drastically alters the nature

of design and the importance of specific design constraints.

Probably the most profound change is the rapidly increasing

importance of interconnect. While in previous technologies,

delay and power consumption were dominated by logic gates,

in modern and pending technologies it is and will be domi-

nated by interconnect. As a result, a number of approaches at

all levels of the design process have been proposed to reduce

the amount of long interconnects.

Bypassing (also known as template matching and the ad-

dition of deflection operations) is a widely used architectural

technique for design optimization that mainly targets the re-

duction on the number of operations and improvements in

clock cycle utilization. To the best of our knowledge, this is

the first proposal of their use for minimization of long inter-

connect and the minimization of routing density. We propose

an efficient ILP formulation for the identification of positions

for insertion of bypassing operations in the design. The effec-

tiveness of the approach is amplified due to the high flexibility

of the technique: the user can define an arbitrary set of con-

ditions on the structure of interconnect, including their total

number and the maximal number of incoming and outgoing

interconnect for each individual functional unit.

We introduce two main novelties that significantly reduce

the complexity of the ILP formulations: the use of dummy

transfer variables and the recursive development of ILP for-

mulations. We compound these technique with the system-

atic use of schemes for the translation of Boolean constraints

into an ILP format and aggressive preprocessing, in order to

enable rapid derivation of optimal solutions for all design in-

stances of interest. The effectiveness of the optimization ap-

proach and ILP formulation is demonstrated on large scale

design using the TRIMARAN platform [1].

2. RELATED WORK

In this section, we briefly survey the related work on the use of

bypassing operations, coordinated optimization in behavioral

and physical designs, and interconnect optimization in deep

submicron designs.

Bypassing was first introduced in communication litera-

ture [2]. Later, it was also used, under the name of deflection

operations and bypassing in behavioral synthesis [3, 4, 5] in

order to heuristically address the reduction of local intercon-

nect and the size of registers files.

The importance of addressing long interconnect in deep

submicron designs has been well established [6, 7, 8]. A

number of techniques for addressing physical design prob-

lems during behavioral and architectural synthesis has been

proposed [9]. We differ from the previous research not only

by establishing the complexity of the problems and providing

practical provably optimal solutions, but also by posing the

problems in a significantly more generic and flexible way so

that any specific structure of interconnect can be targeted for

FU
k

FU
k

FU
i

B
j

i-k

i-j j-k

FU
i

Fig. 1. Illustration of adding a bypass operation to a transfer.

II ­ 771­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

optimization. Recently, bypassing attracted a lot of attention

in general purpose computing community where it has been

considered as one of main mechanisms for creating scalable

multiprocessor architectures [10, 11].

3. CONCEPTS AND TRADE-OFFS

A functional unit (FU) is an operation such as an fixed point

or floating point ALU, multiplication, branch predictor, shifter,

etc. We define an architecture as a set of FUs and global in-

terconnect between two distinct FUs. A transfer exists if the

result of one FU is an input to another FU. We will define

transfers between two FUs, FUi and FUk as i→k.

Bypassing is a generic architectural transformation that

can be applied on a variety of architectures. In order to en-

sure that our approach is directly applicable to the standard

design practice, in our treatment we follow the standard in-

dustrial architectural organization where a single register file

is connected to each input of an execution unit. This orga-

nization has numerous advantages including compact layout

and reduced amount of interconnect. The layout is compact

since all registers are aligned, and share multiplexing, demul-

tiplexing, and control logic between registers. The amount of

interconnect is reduced since all registers in one register file

share the same set of interconnections.

Bypassing is an architectural transformation where we add

an alternative path in conjunction with an existing functional

unit. The net effect is that an interconnect from unit FUi

to FUj is realized using two already existing interconnects:

from FUi to unit Bj and from Bj to functional unit FUj

(Figure 1). Bypassing can be accomplished in two ways: (i)

using identity operations and (ii) by adding a bypassing path.

The use of identity operations (e.g. 0 for addition or 1 for

multiplication) results in a need for an additional register as

well as an additional clock cycle for transfer of data from FUi

to FUj through bypassing unit Bj .

Note that the bypassing path can be added either before

(Figure 2(a)) or after the register file (Figure 2(b)). Each of

the alternatives has certain advantages and limitations. In the

scheme shown in Figure 2(a), regardless of the number of

sources and destinations that use the bypassing path of unit B,

there is only a need to add two sets of n registers for an n-bit

wide datapath. However, in our implementation, we adopted

the scheme shown in Figure 2(b) because this architecture

does not introduce an additional clock cycle for completion

of the data transfer through a bypassed functional unit as re-

quired by the first scheme. Finally note that the addition of

a bypass path does not increase the number of multiplexers:

while a set of n MUXs is added after the unit B simultane-

ously we eliminate a set of n MUXs in front of unit C.

The bypass of a functional unit is accomplished by adding

a set of demultiplexers on the input of the unit and a set of

multiplexers on its output. The alternative path consist only

of local interconnect from the demultiplexers to the multi-

B CA

(a)

B CA

(b)

Fig. 2. Realization of bypassing transformation.

plexers. In many cases, for operations such as addition and

multiplication, one can use identity elements to accomplish

the same effect.

4. ADDITION OF BYPASS UNITS

In this section, we present an ILP-based approach for the ad-

dition of bypass operations to eliminate all transfers between

a pair of FUs and therefore long interconnect. The main idea

is to use two existing local interconnects in order to eliminate

a long interconnect.

We focus our attention on a program P that is compiled

to an architecture with specific constraints on the number of

incoming interconnect for each FU. The goal is to introduce

the minimal number of bypass operations between consecu-

tive operations (transfers) in such a way that the number of

incoming interconnect for each FU is within the constraints

of the architecture. Note that by minimizing the number of

added bypass operations, the upper bound on the number of

additional cycles which will be necessary to schedule the op-

erations is minimized. Formally, the problem can be defined

as follows.

Problem: Addition of Bypass Operations with Maximal
Incoming Interconnect per Functional Unit
Instance: Given a set of architecture constraints A over a set of FUs

M, for each m ∈ M a maximum number of incoming interconnect

I(m) ∈ Z+, a program P with a set of consecutive operations T ,

for each t ∈ T a frequency F (t), positive B.

Question: Can P be scheduled with A so that the maximum number

of incoming interconnect is satisfied and includes at most B bypass

operations?

Note, we do not consider local interconnect, ie. trans-

fers of type i→i. Additionally, we allow multiple FUs of the

same operation. In this case, the frequency as to which trans-

fers occur for each of the duplicated units must be defined

independently.

We have proved that the bypass problem is NP-complete

using the degree-bounded connected subgraph (DBCS) prob-

lem as the starting point. The DBCS problem asks, Is there

a subset of edges with a given cardinality in a given graph

such that the subgraph is connected and no node has a degree

exceeding a given number? The degree-bounded connected

subgraph problem is equivalent to a special instance of the

bypass problem where the goal is to minimize the number of

II ­ 78

transfers under a uniform constraint on the number of incom-

ing interconnect for all units, assuming that there is an equal

number of transfers between all pairs of distinct FUs.

We introduce two constants for the ILP formulation for

bypass addition. The first constant Im is the number of al-

lowable incoming interconnect for each type of FU, which is

dictated by the architectural constraints. The second constant

Fik denotes the frequency of usage of transfer i→k, which is

dictated by program P . All Fii are assigned to 0, since we do

not consider local interconnect.

Im = number of incoming interconnects for FUm

Fik = original number of transfers from i→k

xik =
{

1, if the transfer from i→k remains

0, otherwise (i.e. i = k).

bijk =

⎧⎨
⎩

1, if bypass of type j added between all

transfers of type i→k
0, otherwise.

vik =
{

1, if there is no bypass from i→k
0, otherwise.

uik =

⎧⎨
⎩

1, if transfer i→k is used

to support a bypass

0, otherwise.

We define a number of variables in order to formulate the

problem. The first variable xik denotes the transfers from

FUi to FUk which are selected to remain in the architecture.

Since local interconnect between a FU is not considered, we

assign xii to be 0. For each transfer type i→k, a bypass of

any type except i or k is allowable, therefore we define vari-

able bijk to represent if bypass operations of type j are added

on transfers i→k. In addition to these two variables, we must

define two secondary variables vik and uik which are used to

determine which transfers remain in the architecture. Variable

vik denotes wether a bypass operation of any type is added to

transfers i→k. If a transfer i→k is used to support a bypass

operation used on a transfer variable uik is set to one.

There are three main types of constraints for the addition

of bypass operations. The first type of constraint specifies that

for each transfer type, at least one bypass must be selected. It

is allowable however, for the selected bypass to be the same

as one of the transfer FU (i.e. i = j or j = k is allowed and

signifies no transfer added).

∑
j

bijk = 1 for all i and k (1)

∑
i

xim ≤ Im for all FUm (2)

For each FU, the number of transfers into FUm which remain

in the design must be less than the allowable number. There-

fore the total number of transfers into FUm must be smaller

than the allowable number of inputs (Eq. 2).

The last type of constraint enforces that a transfer xik

must remain if either a bypass was added to a transfer such

that interconnect i→k is required to support it (i.e. bypass

of type i is added on a transfer into FUk) or no bypass was

added on the original transfers from i→k. We can specify this

constraint mathematically as:

xik = vik ∨ uik where (3)

vik = biik ∨ bikk (4)

uik = bik1 ∨ . . . ∨ bikk ∨ b1ik ∨ . . . ∨ biik for all i �= k (5)

We split this expression into multiple constraints. The first set

of constraints determines vik which denotes if a bypass of any

type other than i→k was added between transfer i→k. Since

constraint (Eq. 1) specifies that one bypass must be added,

the constraint determines if a pseudo-bypass was added (i.e.

a bypass which is the same FU as either i or k). If one of

these pseudo-bypass operations was added, then a “true” by-

pass was not added. Therefore, the transfer from i→k must

remain. Variable vik will be set to 1 if no bypass of any type

was added to transfer i→k and set to 0 if a bypass was added.

In order to implement a logical “or” operation, three con-

straints must be added as shown by (6).

vik ≤ biik + bikk, vik − biik ≥ 0, vik − bikk ≥ 0 (6)

The second set of constraints (Eq. 7) determines the value

of uik which signifies if any bypass operation was added which

is dependent on an interconnect between i→j or j→k. Each

logical “or” operation can be specified using the same formu-

lation as shown above (Eq. 6).

uik = bik1 ∨ . . . ∨ bikk ∨ b1ik ∨ . . . ∨ biikfor all i �= k (7)

Together vik and uik in Eq. 3 will determine if the transfer

from i→k must remain. If both vik and uik are 0, then a by-

pass was added to all original transfers between i→k and the

transfer is not needed by an added bypass operation. There-

fore, the interconnect from i→k is no longer needed and can

be eliminated (i.e. xik equals 0). In all other cases xik will

equal 1, since no bypass was added to the original transfers

and/or there was an addition of bypass operations which re-

quire transfers from i→k.

xik ≤ vik + uik xik − vik ≥ 0 xik − uik ≥ 0 (8)

OF : MAX(
∑
i,k

xikFik) (9)

The goal is to optimize the interconnect structure with mini-

mal penalty in terms of additional operations. Therefore, the

objective is to minimize the total number of bypass opera-

tions added. Hence, the OF maximizes the number of trans-

fers which remain after the addition of bypass operations.

A variation on the original formulation is to allow the ad-

dition of multiple bypass operations per transfer. This modifi-

cation allows the elimination of transfers which were used to

II ­ 79

Instance Most Common Transfers

Square Root add→pred lt (798), add u→add (768),

(SR) add→ld f2 (732)

Convo. Encoder add u→add (1500), ld i→xor (1400),

(CE) add→ld i (1300)

g721 encode ld i→add (22,373), add→ld uc2 (14914)

(g721E) add→pred lt (14,914)

g721 decode mov→ld i (189,758), mov→st i (103,504)

(g721D) lsl→or (17,250)

g721 ld i→add (81,583), add→ld uc(51,759),

mov→pred ne (49,416)

Comm. Module ld i→add (83,183), add→ld uc (52,759),

(CM) mov→pred ne (49,416)

Media Processor ld i→add (83,186), add→ld uc (52,759),

(MP) mov→pred ne (49,416)

Table 1. Most common transfer types.

support other bypass operations. In order to model this case,

we allow m − 2 bypass variables per transfer. Constraints

(6,7, and 8) are replicated to account for each new pair for

which a bypass can be introduced in between and modified

to include all possible scenarios for which a bypass operation

will remain included.

In addition, the dual problem can be formulated. The goal

is to minimize the final number of incoming interconnect for

the program P using a specified number of bypass operations.

In order to formulate this dual problem in ILP form, constraint

(2) is modified to specify that the sum of the bypass oper-

ations introduced must be less than the specified maximum

value. Also, the OF is restated to minimize the total number

of interconnect (the sum of the xik’s).

5. EXPERIMENTAL RESULTS
In this section we evaluate our bypassing approachusing a

set of real life designs given in Table 1. SQRT uses New-

ton Raphson method to compute the square root of a number.

SQRT is a standard benchmark included in Trimaran. The

G721 is an implementation of the CCITT G.721 voice from

the Mediabench set of benchmarks. Both encoding and de-

coding cases were considered. The Convolutional Encoder

has rate 1/2 with 2 symbols per bit. The last three are pro-

grammable chips made of four benchmarks: g721 combines

the decoder and encoder, CM adds to g721 the Convolutional

decoder to form a communication module, and multimedia

processor (MP) combines all four designs.

Table 1 shows the three most used transfer types for the

benchmarks. Table 2 shows the results for bypassing. The

second column indicates the initial number of interconnects.

The third column of Table 2 shows the number of interconnect

(IC) after minimization and the fourth column shows the per-

centage of IC reduction. Finally, the percentage reduction in

runtime is indicated. The number of transfers was reduced on

average by 66.1% by introducing bypassing. Note that in the

case of bypassing the runtime of the benchmarks increased at

average by 1.15%.

Inst. Orig # At Most % IC % RT

IC 3 In. IC Reduc. Overhead

SR 56 17 69 0.6

CE 42 10 76 1.3

g721E 72 25 65 3.1

g721D 72 21 70 2.1

g721 72 26 63 1.9

CM 72 28 61 1.2

MP 72 29 59 0.9

Table 2. Experimental Results: Bypassing.

6. CONCLUSION

We have developed an ILP-based approach for effective use

of bypassing during architectural space exploration in such a

way that the properties of final interconnect networks are op-

timized. The effectiveness of the approaches and algorithms

is demonstrated using the Trimaran-based platform [1]. We

were able to reduce the number of interconnect by a factor

of two to three times with only nominal throughput reduction

with bypassing.

7. REFERENCES

[1] Trimaran, “http://www.trimaran.org/.,” .

[2] P. Baran, “On distributed communication networks,” IEEE
Transactions on Communications, vol. 12, no. 1, pp. 1–9, 1964.

[3] D. Herrmann and R. Ernst, “Improved interconnect sharing

by identity operation insertion,” in IEEE/ACM International
Conference on Computer-Aided Design, 1999, pp. 489–492.

[4] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and

R. Brodersen, “Optimizing power using transformations,”

IEEE Transactions on CAD, vol. 14, no. 1, pp. 12–31, 1995.

[5] D. Lobo and B. Pangrle, “Redundant operator creation: A

scheduling optimization technique,” in IEEE/ACM Design Au-
tomation Conf., 1991, p. 775778.

[6] K. Banerjee et al., “3-D ICs: A novel chip design for improv-

ing deep submicron interconnect performance and systems-on-

chip integration,” in Proceedings of the IEEE, Special Issue on
Interconnects, 2001, vol. 89, pp. 602–633.

[7] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance

analysis and optimization of latency insensitive systems,” in

ACM/IEEE Design Automation Conf., 2000, pp. 361–367.

[8] W. J. Dally and S. Lacy, “VLSI architecture: Past, present, and

future,” in Adv. Research in VLSI Conference, 1999.

[9] J. Cong et al., “Microarchitecture evaluation with physical

planning,” in ACM/IEEE Design Automation Conf., 2003, pp.

32–35.

[10] K. Sankaralingam, V.A. Singh, S.W. Keckler, and D. Burger,

“Routed inter-alu networks for ilp scalability and perfor-

mance,” in Computer Design, 2003.

[11] M.D. Taylor, W. Lee, S.P. Amarasinghe, and A. Agarwal,

“Scalar operand networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 2.

II ­ 80

