
A BLOCK-FLOATING-POINT PROCESSOR FOR RAPID APPLICATION DEVELOPMENT

Hiroaki Tanaka, Yoshinori Takeuchi,
Keishi Sakanushi, Masaharu Imai

Graduate School of Information
Science and Technology,Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Shiro Kobayashi

Asahi Kasei Corporation
Okada 3050, AXT Maintower 22F
Atsugi, Kanagawa 243-0021, Japan

ABSTRACT
This paper proposes an instruction set processor which uses

hierarchical block-floating-point (H-BFP) arithmetic. H-BFP

has been developed to provide efficient development approach

for digital signal processing system. H-BFP offers highly ab-

stracted computation model, and leads to cost-effective im-

plementation. However, application development based on

H-BFP is still time consuming task because of lacking high

level programming language. In this paper, a processor archi-

tecture together with a set of instructions to support H-BFP

are proposed. We also propose a related software develop-

ment environment for efficient algorithm translation which

generate high performance codes without any time consum-

ing task. Experimental results show proposed environment

achieves high performance signal processing systems with H-

BFP processors.

Index Terms— Digital Signal Processors, Fixed Point

Arithmetic, Design Methodology

1. INTRODUCTION

Digital signal processors (DSPs) are one of the most impor-

tant components to realize digital signal processing systems.

DSPs are widely used to develop consumer electronic prod-

ucts and release them to market in a short development period.

There are two major types of DSPs classified by the supported

arithmetic. The first one is floating-point arithmetic and the

other is fixed-point arithmetic. Each of these DSPs has dif-

ferent features. From the application software development

point of view, software for floating-point DSPs can be effi-

ciently developed, because high signal quality can be easily

achieved due to the nature of floating-point arithmetic. How-

ever, the floating-point units are expensive and not suitable

to realize cost-effective digital signal processing systems. On

the other hand, fixed-point DSPs do not have expensive hard-

ware. For the reason of low hardware cost, fixed-point DSPs

are widely used in consumer electronics. However, the devel-

opment of software for fixed-point DSPs is time consuming

task because it is difficult to develop fixed-point implementa-

tion which achieves high signal processing quality.

As a compromise between floating-point and fixed-point,

block-floating-point (BFP) implementation is also used on

fixed-point DSPs. While a BFP implementation can realize

high signal processing quality similar to floating-point on a

low-cost fixed-point hardware, developing BFP implementa-

tion is still a hard task. Actually, BFP has been applied to

some limited applications[1][2], but efficient BFP implemen-

tations for other applications are not well known. In order to

solve the problem of lacking the systematic implementation

approach, hierarchical block-floating-point (H-BFP) arithmetic

has been proposed[3][4]. The basic concept of H-BFP is

to keep data on the memory in floating-point format, while

processing data in fixed-point format. With H-BFP arith-

metic, desired signal processing quality and reasonable hard-

ware implementation can be obtained simultaneously like usual

BFP. A good feature of H-BFP arithmetic is that the H-BFP

implementation is directly derived from floating-point imple-

mentation. However, the application development approach

presented in [4] is writing assembly code from scratch refer-

ring to the floating-point implementation of the target appli-

cation. Manual translation of programs from high level lan-

guage into assembly language is error prune and a time con-

suming task. A software development method which offers

high productivity is required.

In this paper, an instruction-set processor supporting H-

BFP arithmetic and its application development method are

proposed. The proposed processor is designed based on the

RISC architecture to enable compiler-based development. In

the proposed method, H-BFP programs are implemented by

modifying usual floating-point programs. The required modi-

fication is only to add special functions which are mapped into

H-BFP instructions directly by compilers. Since the modifi-

cation does not require any complicated program transforma-

tions, H-BFP program can be easily developed.

The rest of this paper is organized as follows. The H-BFP

arithmetic is summarized in section 2, and an instruction-set

processor with H-BFP arithmetic is presented in section 3.

The software development approach for H-BFP processors is

proposed in section 4. Experimental results are described in

section 5. Finally, this paper is concluded in section 6.

II 651424407281/07/$20.00 ©2007 IEEE ICASSP 2007

2. H-BFP ARITHMETIC

This section describes the concept of H-BFP arithmetic[3]

[4]. In the H-BFP, data elements are represented in floating-

point format when they are on memories. During data pro-

cessing, data elements are loaded from memories to the regis-

ters, then, they are converted from floating-point format into

fixed-point format in the block-floating-point manner. Oper-

ations such as addition, multiplication and accumulation are

performed on the data represented in fixed-point format. Af-

ter the computations, results are converted into floating-point

representation again, and stored into memories. Fig. 1 illus-

trates H-BFP arithmetic. As mentioned above, a set of data is

located in data memory in floating-point representation. The

floating-point to fixed-point converter is used to convert the

data element. Data processing are performed on the fixed-

point data path, and then the results are converted floating-

point representation by the fixed-point to floating-point con-

verter. The fixed-point to floating-point converter performs

floating-point normalization. The results are stored to the data

memory.

H-BFP has the advantage in terms of application produc-

tivity over conventional BFP arithmetic. In the development

of conventional BFP based systems, design quality, such as

signal quality, hardware cost and processing time, heavily de-

pend on the implementation options. Application developers

have to make effort to find a reasonable implementation. On

the other hand, though H-BFP requires additional overhead in

execution time due to data format conversions, high precision

signal processing and low hardware cost are ensured.

Fig. 1. H-BFP Arithmetic

3. H-BFP PROCESSOR ARCHITECTURE

An H-BFP processor has been designed based on the RISC ar-

chitecture. Since the RISC architecture is simple, it is suitable

for devices with limited hardware area. Another advantage of

the RISC architecture is that high quality assembly code can

be compiled from programs written in high level language.

Fig. 2 shows the proposed H-BFP processor architecture.

The H-BFP data path is embedded in the conventional RISC

pipeline at the third stage. The instruction set of the target

processor is designed including both conventional RISC style

instructions and H-BFP instructions. The target architecture

is five stage pipelined; i.e., instruction fetch (IF), instruction

decode (ID), execution (EX), memory access (ME), and write

back (WB) stages. The H-BFP data path is equipped into

Fig. 2. H-BFP Processor Architecture

EX stage. There are 4 components in the H-BFP data path,

block-scale-factor registers, alignment shifter, normalization
shifter, and scale-factor computation unit. The block-scale-

factor registers holds scale-factors of data blocks. The align-

ment shifter is used to convert floating-point to fixed-point

numbers. The mantissa of a floating-point number is extracted

and aligned by the shifter before computations. On the other

hand, the normalization shifter is used to convert fixed-point

numbers to floating-point numbers. The scale-factor compu-

tation unit manipulates block-scale-factors. Several kinds of

block-scale-factor manipulations are required in the H-BFP

arithmetic, such as block-scale-factor computations of data

blocks, shift amount generation in float to fixed point con-

versions. The scale-factor computation unit is used for such

scale-factor manipulations.

For H-BFP based processing, instructions which perform

primitive operations of H-BFP are implemented. Floating-

point to fixed-point and floating-point to fixed-point conver-

sion instructions are implemented as register to register oper-

ations. Block-scale-factor manipulation instructions are also

implemented as operations between block-scale-factor regis-

ters.

4. SOFTWARE DEVELOPMENT ENVIRONMENT

In this section, software development approach for H-BFP

processor introduced.

4.1. Software Development Approach

Software for H-BFP processor is developed as follows. A pro-

gram based on floating-point arithmetic of the target applica-

tion is written in a high level programming language first of

all. Then, the program is rewritten into the program based on

H-BFP arithmetic. The differences of the computation model

between the floating-point and H-BFP are that data are non-

blocked or blocked, and data conversions after/before opera-

tions are not needed or needed. Hence, the software for H-

BFP processor can be developed by adding H-BFP specific

operations to the floating-point arithmetic based program. To

enable the programmers to add such operations, a compiler

II 66

technique called compiler intrinsic is used. Compiler intrin-

sic functions are the functions in the high level programming

language which are mapped to the specific instructions of the

target processor. Using compiler intrinsic, H-BFP specific

operations in H-BFP programs can be directly mapped to in-

structions of the H-BFP processor.

Fig.3 shows the development flow of conventional approa-

ches and the proposed approach. In conventional fixed-point

or BFP based software development, and H-BFP based soft-

ware development presented in [4], floating-point arithmetic

based program is developed first. Then, the target applica-

tion is developed referring to the floating-point based pro-

gram as a reference model. In the conventional fixed-point

or BFP based software development flow, several implemen-

tations must be considered, and analysis of trade-off between

signal processing quality and costs has to be performed. In the

flow of [4], while the feature of H-BFP eases development,

assembly programming is still needed. On the other hand, in

the proposed approach, the target application program can be

obtained easily because all have to do is program refinement

by insertion of compiler intrinsic functions.

Fig. 3. Comparison of Application Development Flow

4.2. Program Refinement

Fig.4 shows a program refinement example of a floating-point

program. There are three program fragments in Fig.4. The

left program is the floating-point implementation for proces-

sors supporting floating-point arithmetic. The upper and lower

programs at the right in Fig.4 are the H-BFP implementation

and floating-point implementation for the H-BFP processor,

respectively. The upper right program can be obtained by

inserting scale-factor manipulations and data conversions in

block-floating-point manner. On the other hand, the lower

right program can be obtained by inserting H-BFP specific

operations in floating-point manner. Compiler intrinsic func-

tions, sfcselect, tofix , toflt , are appeared into their cor-

responding instructions for the H-BFP processor.

All these example programs compute the addition of two

vectors. In the upper right program in Fig.4, the addition of

two vectors is interpreted as addition of two vectors which

belong to different data blocks. The variables asfb and bsfb

in Fig.4 hold the block-scale-factors for data blocks a and b

respectively. The sfcselect function computes the block-

scale-factor which determines the fixed-point data format on

the addition. In the loop body, tofix function performs floating-

point to fixed-point conversion, toflt function performs fixed-

point to floating-point conversion. By inserting scale-factor

manipulation such that the H-BFP processor performs the ma-

nipulation before every addition as shown the lower right pro-

gram, floating-point implementation on H-BFP processor can

be obtained. The floating-point implementation takes more

execution cycles than H-BFP implementation in the runtime.

However, floating-point implementation achieves higher pre-

cision of arithmetic operations than H-BFP implementation.

Fig. 4. Program Refinement for H-BFP processor

5. EXPERIMENTAL RESULTS

In this section, the experimental results are presented.

5.1. Signal Processing Quality
An HDL model of the H-BFP processor has been designed

and the compiler with compiler intrinsics has been developed.

The word length of the processor is set to 32 bits. The floating-

point format on memory is composed of 8bits exponent and

16bits mantissa. The DSPstone benchmark[5] has been used

for experiments. C programs implemented by floating-point

arithmetic in DSPstone benchmark has been modified into H-

BFP and floating-point implementations for the H-BFP pro-

cessor. The HDL model of the H-BFP processor with the

object code generated by the compiler has been simulated on

an HDL simulator. The white noise has been used as the input

of the programs.

The signal processing quality of H-BFP implementation

has been evaluated using an signal-to-noise ratio measure which

is defined as

SNR = 10log[
1
N

∑
n DOUBLE(n)2

∑
n{DOUBLE(n)− TARGET (n)}2]

(1)

where N is the number of outputs of the application,

DOUBLE(n) is the n th output of the double precision floating-

point computation, and TARGET (n) is the n-th output ob-

tained by HDL simulation of the H-BFP processor, respec-

tively.

Table1 shows the SNR of H-BFP and floating-point im-

plementations for each program. The first column shows the

II 67

Table 2. Comparison of the number of insns. among different implementations,

N : the size of vector, M : the width and height of matrix, T : the number of taps
Pentium i386/gcc H-BFP FP

[# of insns] [# of insns] [# of insns]

n real updates 26N+8 18N+13 27N+7

n complex updates 41N+5 45N+14 93N

complex multiply 36N+4 31N+17 106N+7

lms 20N+17 29N+41 48N+5

convolution 17N+5 13N+24 27N+15

dot product 17N+5 13N+23 27N+11

fir 7NT+3 12NT+13 24NT+19

matrix1 8M3+15M2+21M+3 12M3+9M2+5M+5 26M3+8M2+5M

matrix2 19M3+37M2+7M+4 13M3+30M2+8M+16 27M3+47M2+8M+4

mat1x3 19M2+12M+5 13M2+16M+16 27M2+13M+5

fir2dim 57M2T+29M2+6M 36M2T+33M2+9M+21 84M2T+26M2+6M+4

Table 1. SNR of each programs run on the H-BFP Processor

H-BFP : H-BFP impl., FP : floating-point impl.
H-BFP FP

[db] [db]

n real updates 65.7 71.2

n complex updates 65.3 68.8

complex multiply 67.9 71.5

lms 47.5 55.7

convolution 82.6 99.0

dot product 79.1 87.3

fir 89.2 82.7

matrix1 68.3 67.0

matrix2 68.3 70.0

mat1x3 76.6 81.7

fir2dim 73.1 72.5

names of programs, the second and third columns shows the

SNR of the H-BFP and floating-point implementations on the

H-BFP processor, respectively. In Tab.1, SNRs of the H-

BFP implementations ranged from 47.5 to 89.2. SNRs of the

floating-point implementations score higher than those of the

H-BFP implementations. It is confirmed that the H-BFP im-

plementation on H-BFP processor achieves high precision of

signals, and FP implementation on H-BFP processor can fur-

ther improve precision.

5.2. Performance

To confirm the performance of the H-BFP processor/compiler,

the size of assembly programs for H-BFP processor has been

evaluated. Pentium i386/gcc was selected as a reference of

floating-point system to compare the H-BFP processor/comp-

iler. The type of instructions in assembly program includes

arithmetic instructions, memory access instructions, jump and

branch instructions, and floating-point instructions for Pen-

tium/gcc or H-BFP specific instructions for H-BFP and FP.

Without floating-point and H-BFP specific instructions, the

number of instructions of Pentium/gcc and H-BFP assembly

are almost same. Table 2 shows the number of instructions to

process each program for Pentium i386/gcc and H-BFP and

floating-point implementation of H-BFP processor/compiler.

Comparing the H-BFP implementation with Pentium i386/gcc,

the number of instructions of H-BFP implementation is smaller

than that of Pentium i386/gcc in 7 cases. This result indi-

cates the H-BFP processor/compiler can process applications

as efficient as usual processor/compiler supporting floating-

point arithmetic. However, the floating-point implementation

of H-BFP processor, shown as FP, takes much instructions

compared to Pentium i386/gcc. This is because not only data

conversion operations but also scale-factor manipulations are

executed in the floating-point implementation for each opera-

tion.

5.3. Hardware Evaluation
The hardware area of the H-BFP processor was estimated.

The HDL model of the H-BFP processor was synthesized us-

ing a 0.14μm process. The total area of the H-BFP proces-

sor is about 67K gates with the maximum frequency at about

83.3MHz. The total area of the components in the H-BFP

datapath is about 2.5K gates. The maximum delay of the H-

BFP datapath is about 9.96ns, which is shorter than the delay

of the critical path of the entire H-BFP processor, 12.0ns. It

was confirmed that the hardware for H-BFP is very small and

reasonable.

6. CONCLUSION
In this paper, a processor supporting hierarchical block-floating-

point arithmetic and software development method for the

processor are proposed. In experiments, some applications

has been implemented and simulated on the H-BFP proces-

sor. It is confirmed that the H-BFP processor can achieve

high signal quality and low hardware cost. Using the pro-

posed method, signal processing applications can be easily

developed.

The future work is to enhance architecture and instruction-

set of the H-BFP processor, and automatic utilization of H-

BFP instructions by compilers.

7. REFERENCES

[1] K. Ralev and P. Bauer, “Implementation Options for Block Floating

Point Digital Filters,” in Proc. of ICASSP-97, 1997, pp. 2197–2200.

[2] A. Mitra and M. Chakraborty, “The NLMS Algorithm in Block Floating

Point Format,” IEEE Signal Processing Letters, pp. 301–304, 2004.

[3] S. Kobayashi and G. Fettweis, “A New Approach for Block-Floating-

Point Arithmetic,” in Proc. of ICASSP-99, 1999, vol. 4, pp. 2009–2012.

[4] S. Kobayashi, I. Kozuka, and T. Kino, “Rapid Application Software De-

velopment on a Block-Floating-Point DSP,” in Proc. 2003 International
Signal Processing Conference, 2003.

[5] V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr, “DSPstone: A

DSP-Oriented Benchmarking Methodology,” in Proc. of ICSPAT’94,

1994.

II 68

