
HIGH THROUGHPUT SYSTOLIC SOM IP CORE FOR FPGAs

I. Manolakos E. Logaras

Department of Informatics and Telecommunications
University of Athens, Greece

ABSTRACT

We have designed a modular SOM systolic architecture
that can classify data vectors with thousands of elements in
real time. The architecture is described as a soft IP core in
synthesizable VHDL. The SOM neural network size, the
input data vectors dimension, the weight and data element
bitwidth precision etc. are all designer tunable parameters.
Several SOM neural network instances have been
synthesized and their performance evaluated for different
Xilinx Virtex-II and Virtex II-Pro FPGAs. Moderate to
large size SOM networks that can process data vectors with
as many as 4096 elements can fit into a single FPGA device
and clocked at frequencies as high as 150MHz. This makes
the architecture a useful co-processor candidate for the real-
time categorization of large-size genomics and proteomics
datasets.

Index Terms— Self-organizing feature maps, Parallel
Architectures, Systolic arrays, Design automation, FPGAs.

1. INTRODUCTION

Kohonen’s Self Organizing Maps (SOMs) [1] are
unsupervised neural network structures, commonly
employed for clustering highly dimensional data vectors.
SOMs have been used for signal/image processing and
machine learning tasks, such as image compression [2]
feature extraction and pattern recognition, in several
application domains, ranging from industrial monitoring and
automotive control to computational biology.

When high dimensional data vectors are presented
to the SOM, the network can be trained in an unsupervised
manner to construct a low dimensional representation of
their distribution (learning mode). This distribution can then
be visualized to provide feedback on the organization of the
underlying data vectors. It is these dimensionality reduction
and visualization capabilities that have made SOMs a
popular tool for exploratory data analysis and data mining.

A trained SOM network can be used to classify
novel data vectors into as many categories as its neurons
based on their statistical characteristics (recall mode). SOMs
with a small to moderate number of neurons have been used
in genomics and proteomics to group in clusters large sets

of input vectors with thousands of elements (e.g.. gene
expression profiles [3,4] or peak intensities in mass spectra).

As the number of neurons and input vector
elements increase, SOM simulation on a powerful PC may
not be sufficient for applications that demand with near real-
time performance. A powerful PC (e.g. AMD Athlon,
1GHz) may not exceed 85 MCPS (Million Connections Per
Second) in recall mode and 22 MCUPS (Million
Connection Updates Per Second) in learning mode, as it was
shown in [5]. Therefore, several special purpose designs
have been proposed to accelerate SOM processing by
employing custom ASICs or FPGAs [5-7]. FPGAs are
recently gaining in popularity, since they now have the
capacity to house a whole SOM System-On-chip (SoC) into
a single device. In addition to rapid prototyping, some
FPGAs also support dynamic reconfiguration. This
capability allows for adapting the SOM network size and
weights bit precision at run-time to deal with dynamically
changing data processing demands or energy consumption
constraints. However, to harness the full power of FPGAs a
high throughput parallel SOM architecture needs to be
designed and realized as a flexible soft IP core. It can form
the basis for generating different SOM network
implementations tailored to the requirements and constraints
of the target application and device. This is the main
contribution of the work presented here.
 Most SOM hardware implementations proposed so
far, have adopted the SIMD architectural model [5-7]. In
this model during a cycle the same data element is
broadcasted to every Processing Element (PE) that is either
processing it or remains idle. Theoretically, the need for
massive data broadcasting complicates data routing and
limits the clock frequency of such a system. In this paper we
are presenting a parallel SOM architecture design following
the systolic model, in which a single data path traverses all
neuron PEs and is aggressively pipelined. With this
approach the paths formed in the network become shorter,
the cycles needed for classifying a data vector are reduced,
and the clock frequency can become very high. The design
is described as an IP core in VHDL, where the number of
neurons (N), the number of elements per input vector
elements (M) and the number of bits for data and weights
are all tunable parameters.

II ­ 611­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

Fig.1 Overview of the modular systolic SOM architecture.

The rest of the paper is organized as follows: In section 2
we present the systematic design and performance analysis
of the parallel SOM architecture. In section 3, we discuss
its realization as a flexible IP core and present the
characteristics of synthesized instances for different FPGA
devices. We also elaborate on the design of a flexible,
parameterized and synthesizable FIFO memory block for
the neuron weights, which can support SOMs with different
vector sizes and weights precision. Furthermore, we
compare our architecture to others proposed for the same
problem. Finally, in section 4 we summarize our findings
and point to interesting work in progress.

2. SOM ARCHITECTURE DESIGN

2.1 Architecture Overview

The main requirements for the proposed high throughput
modular SOM architecture are: a new data element should
enter the architecture every cycle, it should flow in a
pipelined fashion from PE to PE, and the supported data
rates should be as high as possible.

Every SOM neuron is implemented using two
simple Processing Elements (PEs): the Recall mode PE
(PER), and the weights Update PE (PEU). The two types of
PEs in a neuron are organized into two separate “columns”
(recall and update linear arrays), but share the same
dedicated FIFO memory block storing the neuron’s weights,
as shown in Figure 1. The number of PEs in each column
matches the total number of neurons in the SOM network.
An SOM Module Control Unit (MCU) generates all the
necessary control signals for both array columns. The
winning neuron’s position is generated at the topmost
PERN-1. It is forwarded to the bottom PEU0 in the update
column, if the weights should be updated after a recall
operation (learning mode). A weight init (weight

Fig.2 (a) The DG for a vector recall computation, N=4, M=6, (b)
The resulting SFG array after linear space-time mapping, (c) The
two types of DG nodes. (d) The resulting PER I/O structure.

out) input (output) is available for downloading
(uploading) the weight matrix from (to) an external memory
device respectively for initialization and debugging
purposes.

2.2 The Recall Column PER array design

The objective of the PEs in the PER column is to compute
the distances between the locally stored weight vectors (in
the FIFOs) and the passing through input data vector, and
determine the position (index) of the neuron exhibiting the
smallest distance (winner). For the i-th neuron, the
Manhattan distance Di is computed as:

1

M

i ij j
j

D W X (1)

where M is the number of elements in the input data vector.
In Fig. 2(a) we show the Dependence Graph (DG)

[8] for a recall phase computation, consisting of two
sections, one corresponding to the distance calculation
(black nodes) and another to finding the winner’s position
(gray nodes). A black DG node (Fig. 2(c)) models a
computation of the absolute value of the difference between
a weight and input vector element followed by an
accumulation. A gray node models a comparison between
a locally computed distance value and a distance value
computed in the PE below; it propagates the smaller value
and corresponding PE index upstream in the DG. In this
fashion, the min. distance and the winner’s index emerge at
the top right corner DG node (Fig. 2(a)).

The DG is linearly mapped to the Signal Flow
Graph (SFG) of Figure 2(b) after applying the projection
vector [1 0]Td and scheduling vector [1 1]Ts [8].
Each element of the resulting linear array (PER) has two

II ­ 62

adders and a comparator. Input vector elements are perfectly
pipelined and pass from all PERs one by one. The cycles
needed for a vector recall operation, Cr, and the
corresponding performance, Pr, are

rC M N cycles and
(1)

r
N MP f
M N

 MCPS,

where f is the clock frequency of the system. Using block
pipelining, a new input vector may be introduced to the
array as soon as a distance calculation completes at PER0
and while the previous winner determination is still in
progress (gray nodes DG). In this case, the cycles needed
for a vector recall and the corresponding performance
become:

1b
rC M cycles, and

 (1)
1

b
r

N MP f N f
M

 MCPS respectively.

2.3 The Update column PEU array

The PEU column is responsible for updating in parallel the
neuron weights during a learning mode SOM operation. The
position of the winning neuron (found by the PER column)
is transmitted to the PEU column where it is used in each
PE to update the weights based on the formula:
 | |new

ij ij i j ijW W a X W . (2)
Variable ai is the update rate, which should decrease as the
distance of neuron i from the winning neuron increases. It is
computed using the formula 1/ 2 ih

ia , where

 max{| ' |,| ' |}i x x y yh i i i i (3)

is the maximal difference between the winning neuron’s i’
and SOM neuron’s i Cartesian coordinates in the x
(horizontal) and y (vertical) directions. This definition of ai
leads to a rectangular neighborhood function that
approximates a 2D Gaussian (Mexican hat). It has been
shown that keeping the neighborhood size fixed and
reducing the gain around the winning neuron (spatially
decreasing ai) leads to better results than using a constant
gain and reducing gradually the size of the neighborhood as
the SOM training process progresses [9].

The DG for the weights update operation is shown
in Fig. 3(a). A DG node corresponds to a weight update
computation (Equ. (2)), where ai is calculated using hi that
is derived based on (3). Every PEU is assigned at synthesis
time the coordinates (ix, iy) of the neuron that it corresponds
to. Moreover, it receives at run-time the position (i’x, i’y) of
the winning neuron produced at PER. Therefore, PEUi has
locally all the information it needs to compute ai. By using
the same projection and schedule vectors as for PER we
arrive at the linear SFG array of Fig 3(b) consisting of N

Fig.3 (a) The DG for a vector update computation, N=4, M=6, (b)
The resulting SFG array after linear space-time mapping, (c) The
DG node, (d) The PEU I/O structure.

PEUs. The PEU I/O structure is shown in Fig. 3(d).

The number of cycles Cl needed for a learning
operation (recall plus update for one vector) and the
corresponding learning performance, Pl, are given by:

1 1 2b
l r uC C C M M N M N cycles, and

2
u

l
N M

P f
M N

 MCUPS ,

where Nu, is the expected number of updated weights,
estimated as the arithmetic mean of the neurons in the
neighborhood of the winner and assuming that hi is in the
range [1,4] and all neurons have equal probability to win.

3. RESULTS AND DISCUSSION

The proposed parameterized SOM architecture has been
described in VHDL and synthesized using the XST Xilinx
FPGA compiler [10]. The design can be implemented using
any FPGA device with internal static RAM blocks
(BRAMs) that are needed to realize the FIFO neuron weight
memories. Table 1 provides the size and performance
characteristics of several SOM networks synthesized using
the soft IP core but different FPGAs.
The maximal number of neurons that can fit in an FPGA is
determined by the available Configurable Logic Blocks
(CLBs). For the devices listed in Table 1 we first found the
maximum number of neurons Nmax that does not exceed
75% CLB coverage (considering that at least 25% of device
resources should be reserved for external memory
interfacing, reconfiguration control etc.). Then, with Nmax
fixed, weights of 8-bit and data elements of 12-bit precision
(typical parameters used also in [5]), we have determined
Mmax, i.e. the maximal number of elements per data vector
that can be supported using the available BRAMs. For every
such configuration, Table 1 provides the achieved clock
frequency, the performance of the recall and learning

II ­ 63

Device Nmaz Mmax f
(MHz)

Pr

MCPS
Pl

MCUPS
CLBs

%
XC2V2000-6 25 4096 150 3750 1794 73

XC2V4000-6 56 4096 150 8400 2899 75
XC2V6000-6 100 2048 148 14800 3467 72
XC2V8000-5 140 2048 127 17780 3192 72
XC2VP30-6 32 4096 165 5280 2054 72
XC2VP50-6 56 4096 166 9296 3208 72

Table 1. Synthesis results for Virtex-II and Virtex-II Pro FPGA
devices for 8-bit weights and 12-bit data elements.

phases and the percentage of utilized device resources. It is
observed that moderate to large size parallel SOM
architectures fit into one FPGA and can process effectively
large size data vectors. Very high data rates were achieved
in all configurations.

Depending on the number of bits used per weight
(which is a parameter in the VHDL description) the BRAMs
are configured automatically either as 2K x 8-bit or as 1K x
16-bit. The VHDL FIFO entity is very flexible such that if
the number of data elements M per input data vector
(number of elements in each FIFO) exceeds 2K or the
weights precision exceeds 8-bits, multiple BRAMs are
automatically cascaded in order to form an appropriate
FIFO memory structure for each neuron. In this way, the
design can support SOM networks with a large number of
weights per neuron and any desirable weight precision up to
16-bits, limited only by the available number of BRAMs in
the target FPGA.
 It is interesting to compare and contrast our
system’s synthesis results for the XC2V6000 device to
those of the SIMD architecture described in [6] when
implemented in the same device. Our system is more
flexible in terms of memory organization since it was
designed to accommodate as large vector sizes (M) as
possible. Its supported data rates are much higher (as
expected for a highly pipelined architecture). The two
systems achieve comparable learning performance, but with
each one of them favoring by design a different side of the
M vs. N tradeoff. At its maximal capacity (Nmaz=100) the
recall performance of our systolic system is larger.
However, it cannot accommodate N=288 neurons as the
SIMD solution, even if M is reduced. This is so because a
lot of the functionality concentrated in the SIMD controller
is replicated in every PE in our case (e.g. the calculation of
ai). Furthermore, the existence of O(N) comparators in our
design consumes more area, but also, in conjunction with
block pipelining, helps determining the winning neuron on
the fly. The design in [6] is optimized for maximal N while
our design is optimized for maximal M. For the targeted
bioinformatics applications, it is required to support the
largest possible M for moderate Ns.

4. CONCLUSIONS

We presented the systematic design and
performance evaluation of a new systolic SOM parallel
architecture. The architecture has been described as a soft
IP core in parameterizable VHDL. The number of neurons,
the number of elements in the input data vectors, the weight
and data precisions are all parameters tunable by the
designer. The architecture is primarily suitable for the real-
time classification of high dimensional data vectors. When
using a large-size Xilinx Virtex-II FPGA device
(XC2V6000) for the implementation of a 10x10 SOM
network processing data vectors with 1K elements,
synthesis results have shown that a classification rate of
144,000 vectors/sec and a learning rate of 68,900
vectors/sec can be achieved. We are currently investigating
the use of the architecture in the real-time clustering of gene
expression profiles as well as in clustering mass spectra,
two operations commonly used in high throughput
genomics and proteomics analysis for biomarker discovery.

5. REFERENCES

[1] T. Kohonen, Self-Organization and Associative
Memory, Springer Verlag, New York, 1984.
[2] C. Amerijckx, J.-D. Legat, M. Verleysen, “Image
compression using self-organizing maps,” Systems Analysis
Modelling Simulation, Vol. 43, pp. 1529-1543, Nov. 2003.
[3] D. Wang, H. Ressom, M. Musavi, C. Domnisoru,
“Double Self-Organizing Maps to Cluster Gene Expression
Data”, Proc. European Symp. on Artificial Neural Networks,
2002, pp. 45-50.
[4] T. Kato, K. Fujimura, H. Tokutaka, Y. Kawata, M.
Ohkita,“Analysis of DNA Microarray Data by Using
SOMs”, Genome Informatics, Vol. 14, pp. 328-329, 2003.
[5] D. Hendry, A. Duncan, N. Lightowler, “IP Core
Implementation of a Self-Organizing Neural Network,”
IEEE Trans. on Neural Networks, Vol. 14, pp. 1085-1096,
Sept. 2003.
[6] M. Porrmann, U. Witkowski, H. Kalte, U. Rückert,
“Dynamically Reconfigurable Hardware: A New
Perspective for Neural Network Implementation”, Proc.
12th Int’l. Conf. on Field Programmable Logic and
Applications, 2002, pp.1048-1057.
[7] M. Franzmeier, C. Pohl, M. Porrmann, U. Rückert,
“Hardware Accelerated Data Analysis,” Proc. Int’l Conf. on
Parallel Computing in Electrical Engineering, 2004, pp.
309-314.
[8] Keshab K. Parhi, VLSI Signal Processing Systems –
Design and Implementations, Willey Inter-Science, 1999.
[9] P. Thiran, V.Peiris, P. Heim, B. Hochet, “Quantization
effects in digitally behaving circuit implementations of
Kohonen networks,” IEEE Trans .on Neural Networks, Vol.
5, pp. 450-458, May 1994.
[10] XST User Guide 8.1i, www.xilinx.com, 2005.

II ­ 64

