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ABSTRACT 

 
We have designed a  modular SOM systolic architecture 
that can classify data vectors with thousands of elements in 
real time. The architecture is described as a soft IP core in 
synthesizable VHDL.  The SOM neural network size, the 
input data vectors dimension, the weight and data element 
bitwidth precision etc. are all designer tunable parameters. 
Several SOM neural network instances have been 
synthesized and their performance evaluated for different 
Xilinx Virtex-II and Virtex II-Pro FPGAs. Moderate to 
large size SOM networks that can process data vectors with 
as many as 4096 elements can fit into a single FPGA device 
and clocked at frequencies as high as 150MHz. This makes 
the architecture a useful co-processor candidate for the real-
time categorization of large-size genomics and proteomics 
datasets. 

Index Terms— Self-organizing feature maps, Parallel 
Architectures, Systolic arrays, Design automation, FPGAs. 
 

1. INTRODUCTION 

Kohonen’s Self Organizing Maps (SOMs) [1] are 
unsupervised neural network structures, commonly 
employed for clustering highly dimensional data vectors. 
SOMs have been used for signal/image processing and 
machine learning tasks, such as image compression [2] 
feature extraction and pattern recognition, in several 
application domains, ranging from industrial monitoring and 
automotive control to computational biology. 

When high dimensional data vectors are presented 
to the SOM, the network can be trained in an unsupervised 
manner to construct a low dimensional representation of 
their distribution (learning mode). This distribution can then 
be visualized to provide feedback on the organization of the 
underlying data vectors. It is these dimensionality reduction 
and visualization capabilities that have made SOMs a 
popular  tool for exploratory data analysis and data mining.  

A trained SOM network can be used to classify 
novel data vectors into as many categories as its neurons 
based on their statistical characteristics (recall mode). SOMs 
with a small to moderate number of neurons have been used 
in genomics and proteomics to group in clusters large sets 

of input vectors with thousands of elements (e.g.. gene 
expression profiles [3,4] or peak intensities in mass spectra).  

As the number of neurons and input vector 
elements increase, SOM simulation on a powerful PC may 
not be sufficient for applications that demand with near real-
time performance. A powerful PC (e.g. AMD Athlon, 
1GHz) may not exceed 85 MCPS (Million Connections Per 
Second) in recall mode and 22 MCUPS (Million 
Connection Updates Per Second) in learning mode, as it was 
shown in [5]. Therefore, several special purpose designs 
have been proposed to accelerate SOM processing by 
employing custom ASICs or FPGAs [5-7]. FPGAs are 
recently gaining in popularity, since they now   have the 
capacity to house a whole SOM System-On-chip (SoC) into 
a single device. In addition to  rapid prototyping, some 
FPGAs also support dynamic reconfiguration. This 
capability allows for adapting the SOM network size and 
weights bit precision at run-time to deal with dynamically 
changing data processing demands or energy consumption 
constraints. However, to harness the full power of FPGAs a 
high throughput parallel SOM architecture needs to be 
designed and realized as a flexible soft IP core. It can form 
the basis for generating different SOM network 
implementations tailored to the requirements and constraints 
of the target application and device. This is the main 
contribution of the work presented here.  
 Most SOM hardware implementations proposed so 
far, have adopted the SIMD architectural model [5-7]. In 
this model during a cycle the same data element is 
broadcasted to every Processing Element (PE) that is either 
processing it or remains idle. Theoretically, the need for 
massive data broadcasting complicates data routing and 
limits the clock frequency of such a system. In this paper we 
are presenting a parallel SOM architecture design following 
the systolic model,  in which a single data path traverses all 
neuron PEs and is aggressively pipelined. With this 
approach the paths formed in the network become shorter,  
the cycles needed for classifying  a data vector are reduced, 
and the clock frequency  can become very high.  The design 
is described as an IP core in VHDL, where the number of 
neurons (N), the number of elements per input vector 
elements (M) and the number of bits for data and weights 
are all tunable parameters.  
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Fig.1  Overview of the modular systolic SOM architecture. 
 
The rest of the paper is organized as follows: In section 2 
we present the systematic design and performance analysis 
of the parallel SOM architecture.  In section 3, we discuss 
its realization as a flexible IP core and present the 
characteristics of synthesized instances for different FPGA 
devices. We also  elaborate on the design of a flexible, 
parameterized and synthesizable FIFO memory block for 
the neuron weights, which can support SOMs with different 
vector sizes and weights precision. Furthermore, we 
compare our architecture to others proposed for the same 
problem. Finally, in section 4 we summarize our findings 
and point to interesting work in progress. 
 

2. SOM ARCHITECTURE DESIGN 

2.1 Architecture Overview 

The main requirements for the proposed high throughput 
modular SOM architecture are: a new data element should 
enter the architecture every cycle, it should flow in a 
pipelined fashion from PE to PE, and the supported data 
rates should be as high as possible.  

Every SOM neuron is implemented using two 
simple Processing Elements (PEs): the Recall mode PE 
(PER), and the weights Update PE (PEU). The two types of 
PEs in a neuron are organized into two separate “columns” 
(recall and update linear arrays), but share the same 
dedicated FIFO memory block storing the neuron’s weights, 
as shown in Figure 1.  The number of PEs in each column 
matches the total number of  neurons in the SOM network. 
An SOM Module Control Unit (MCU) generates all the 
necessary control signals for both array columns. The 
winning neuron’s position is generated at the topmost  
PERN-1. It is forwarded to the bottom PEU0 in the update 
column, if the weights should be updated after a recall 
operation (learning mode).  A weight init (weight  

 
 

Fig.2 (a) The DG for a vector recall computation, N=4,  M=6, (b) 
The resulting SFG array after linear space-time  mapping,  (c) The 
two types of DG nodes.  (d) The resulting PER  I/O structure. 

out) input (output) is available for downloading 
(uploading) the weight matrix from (to) an external memory 
device respectively for initialization and debugging 
purposes. 

2.2 The Recall Column PER array design 

The objective of the PEs in the PER column is to compute 
the distances between the locally stored weight vectors (in 
the FIFOs) and the passing through input data vector, and 
determine the position (index) of the neuron exhibiting the 
smallest distance (winner). For the i-th  neuron, the 
Manhattan distance Di is computed as: 

                                
1

M

i ij j
j

D W X                                (1) 

where M is the number of elements in the input data vector. 
In Fig. 2(a) we show the Dependence Graph (DG) 

[8] for a recall phase computation, consisting of two 
sections, one corresponding to the distance calculation 
(black nodes) and another to finding the winner’s position 
(gray nodes).  A black DG node (Fig. 2(c)) models a 
computation of the absolute value of the difference between 
a weight and input vector element followed by an 
accumulation.   A gray node models a comparison between 
a locally computed distance value and a distance value 
computed in the PE below; it propagates the smaller value 
and corresponding PE index upstream in the DG. In this 
fashion, the min. distance and the winner’s index  emerge at 
the top right corner  DG node (Fig. 2(a)).   

The DG is linearly mapped to the Signal Flow 
Graph (SFG) of Figure 2(b) after applying  the projection 
vector  [1 0]Td  and scheduling vector [1 1]Ts  [8].  
Each element of the resulting linear array (PER)  has two 
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adders and a comparator. Input vector elements are perfectly 
pipelined and pass from all PERs one by one. The cycles 
needed for a vector recall operation, Cr, and the 
corresponding performance, Pr, are 

rC M N   cycles and 
( 1)

r
N MP f
M N

  MCPS,  

where f is the clock frequency of the system. Using block 
pipelining, a new input vector may be introduced to the 
array as soon as a distance calculation completes at PER0 
and while the previous winner determination is still in 
progress (gray nodes DG).  In this case, the cycles needed 
for a vector recall and the corresponding performance 
become: 

1b
rC M   cycles, and 

 ( 1)
1

b
r

N MP f N f
M

  MCPS respectively. 

2.3 The Update column PEU array 

The PEU column is responsible for updating in parallel  the 
neuron weights during a learning mode SOM operation. The 
position of the winning neuron (found by the PER column) 
is transmitted to the PEU column where it is used in each 
PE to update the weights based on the formula: 
                            | |new

ij ij i j ijW W a X W .                   (2) 
Variable ai is the update rate, which should decrease as the 
distance of neuron i from the winning neuron increases. It is 
computed using the formula 1/ 2 ih

ia , where  
 
                              max{| ' |,| ' |}i x x y yh i i i i                         (3)  

is the maximal difference between the winning neuron’s i’ 
and SOM neuron’s i Cartesian coordinates in the x 
(horizontal) and y (vertical) directions. This definition of ai 
leads to a rectangular neighborhood function that 
approximates a 2D Gaussian (Mexican hat). It has been 
shown that keeping the neighborhood size fixed and 
reducing the gain around the winning neuron (spatially 
decreasing ai) leads to better results than using a constant 
gain and reducing gradually the size of the neighborhood as 
the  SOM training process progresses [9].  

The DG for the weights update operation is shown 
in Fig. 3(a). A DG node corresponds to a weight update 
computation (Equ. (2)), where ai is calculated using hi that 
is derived based on (3). Every PEU is assigned at synthesis 
time the coordinates (ix, iy) of the neuron that it corresponds 
to. Moreover, it receives at run-time the position (i’x, i’y) of 
the winning neuron produced at PER. Therefore, PEUi  has 
locally all the information it needs to compute ai. By using 
the same projection and schedule vectors as for PER we 
arrive at the linear SFG array of Fig 3(b) consisting of N  

 
 
Fig.3 (a) The DG for a vector update computation, N=4,  M=6, (b) 
The resulting SFG array after linear space-time  mapping,  (c) The 
DG node,  (d) The  PEU I/O structure. 
 
PEUs. The PEU I/O structure is shown in Fig. 3(d).   

The number of cycles Cl needed for a learning 
operation (recall plus update for one vector) and the 
corresponding learning performance, Pl, are given by: 

1 1 2b
l r uC C C M M N M N  cycles, and 

2
u

l
N M

P f
M N

  MCUPS , 

where Nu, is the expected number of  updated weights, 
estimated as the arithmetic mean of the neurons  in the 
neighborhood of the winner and assuming that hi  is in the 
range [1,4] and all neurons have equal probability to win. 

3. RESULTS AND DISCUSSION 

The proposed parameterized SOM architecture has been 
described in VHDL and synthesized using the XST Xilinx 
FPGA compiler [10]. The design can be implemented using 
any FPGA device with internal static RAM blocks 
(BRAMs) that are needed to realize the FIFO neuron weight 
memories. Table 1 provides the size and performance 
characteristics of several SOM networks synthesized using 
the soft IP core but different FPGAs.    
The maximal number of neurons that can fit in an FPGA is 
determined by the available Configurable Logic  Blocks 
(CLBs). For the devices listed in Table 1 we first found the 
maximum number of neurons Nmax that does not exceed 
75% CLB coverage (considering that at least 25% of device 
resources should be reserved for external memory 
interfacing, reconfiguration control etc.). Then, with Nmax 
fixed, weights of 8-bit and data elements of 12-bit precision 
(typical parameters used also in [5]), we have determined  
Mmax, i.e. the maximal number of elements per data vector 
that can be supported using the available BRAMs. For every 
such configuration, Table 1 provides the achieved clock 
frequency, the performance of the recall and learning  
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Device Nmaz Mmax f 
(MHz) 

Pr 

MCPS 
Pl 

MCUPS 
CLBs 

% 
XC2V2000-6 25 4096 150 3750 1794 73 

XC2V4000-6 56 4096 150 8400 2899 75 
XC2V6000-6 100 2048 148 14800 3467 72 
XC2V8000-5 140 2048 127 17780 3192 72 
XC2VP30-6 32 4096 165 5280 2054 72 
XC2VP50-6 56 4096 166 9296 3208 72 

 
Table 1.   Synthesis results for Virtex-II and Virtex-II Pro FPGA  
devices for 8-bit weights and 12-bit data elements. 
 
phases and the percentage of utilized device resources. It is 
observed that moderate to large size parallel SOM  
architectures fit into one  FPGA and can process effectively 
large size data vectors. Very high data rates were achieved 
in all configurations. 

Depending on the number of bits used per weight 
(which is a parameter in the VHDL description) the BRAMs 
are configured automatically either as 2K x 8-bit or as 1K x 
16-bit. The VHDL FIFO entity is very flexible such that if 
the number of data elements M per input data vector  
(number of elements in each FIFO) exceeds 2K or the 
weights precision exceeds 8-bits, multiple BRAMs are 
automatically cascaded in order to form an appropriate 
FIFO memory structure for each neuron. In this way, the 
design can support SOM networks with a large number of 
weights per neuron and any desirable weight precision up to 
16-bits, limited only by the available number of BRAMs  in 
the target FPGA.  
 It is interesting to compare and contrast our 
system’s synthesis results for the XC2V6000 device to 
those of the SIMD architecture described in [6] when  
implemented in the same device. Our system is more 
flexible in terms of memory organization since it was 
designed to accommodate as large vector sizes (M) as 
possible. Its supported data rates are much higher (as 
expected for a highly pipelined architecture). The two 
systems achieve comparable learning performance, but with 
each one of them favoring by design a different side of the 
M vs. N tradeoff.  At its maximal capacity (Nmaz=100) the 
recall performance of our systolic system is larger. 
However, it cannot accommodate N=288 neurons as the 
SIMD solution, even if  M is reduced. This is so because a 
lot of the functionality concentrated in the SIMD controller 
is replicated in every PE in our case (e.g. the calculation of 
ai ). Furthermore, the existence of O(N) comparators in our 
design consumes more area, but also, in conjunction with 
block pipelining,  helps determining the winning neuron on 
the fly.  The design in [6] is optimized for maximal  N while 
our design is optimized for  maximal M. For the targeted 
bioinformatics applications, it is required to support the 
largest possible M for moderate   Ns. 

 
4. CONCLUSIONS 

We presented the systematic design and 
performance evaluation of a new systolic SOM parallel 
architecture. The architecture has been described as a soft  
IP core in parameterizable VHDL. The number of neurons, 
the number of elements in the input data vectors, the weight 
and data precisions are all parameters tunable by the 
designer. The architecture is primarily suitable for the real-
time classification of high dimensional data vectors. When 
using a large-size Xilinx Virtex-II FPGA device 
(XC2V6000) for the implementation of a 10x10 SOM 
network processing data vectors with 1K elements, 
synthesis results have shown that a classification rate of 
144,000 vectors/sec and a learning rate of 68,900 
vectors/sec can be achieved. We are currently investigating 
the use of the architecture in the real-time clustering of gene 
expression profiles as well as in clustering mass spectra, 
two operations commonly used in high throughput 
genomics and proteomics analysis for biomarker discovery. 
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