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ABSTRACT

Adaptive filter implementations require real-time conversion of 
coefficients to Canonical Signed Digit (CSD) or similar 
representations to benefit from multiplierless techniques for 
implementing filters. Multiplierless approaches are used to reduce the 
hardware and increase the throughput. This paper introduces a 
novel hardware implementation method that converts two’s 
complement numbers to their CSD representations using a fixed 
number of shift and logic operations. As a result, we can greatly 
reduce the power consumption and area requirements for 
hardware implementation of DSP algorithms in which 
coefficients are not known a priori. Because all CSD digits are 
produced simultaneously, the conversion speed and thus the 
throughput are improved when compared to overlap-and-scan 
techniques such as Booth’s recoding. 

Index Terms—adaptive filters, field programmable gate 
arrays, digital arithmetic.  

1. INTRODUCTION 

“Implementation is everything” in the construction of practical 
adaptive filters [13]. These practical hardware implementations 
typically require high throughput, low power consumption and 
small area. For fixed coefficient filters, multiplierless 
implementation approaches are used. However, since the 
coefficients of an adaptive filter are not fixed, general 
multipliers are needed. Multipliers are expensive in terms of 
chip area, power consumption, and operation time. For practical 
high performance adaptive filters, this limitation must be 
overcome.

Multipliers are typically implemented in hardware using 
shift-and-add techniques. The number of add operations depends 
on the number of 1’s in the binary multiplier. The number of 
add/shift operations is directly related to the power consumption 
and area required. Array techniques are used to achieve high 
throughput, at the cost of significant increases in power and area. 

One effective method to reduce the number of shift/add 
operations in multiplier hardware is to reduce the wordlength of 
the multipliers (e.g. filter coefficients). However, reducing the 
wordlength can significantly degrade the performance of the 
implemented algorithm. 

When the value of the multiplier is known, multiplication 
can be implemented using alternate number representations for 
the multiplier, such as the canonical signed digit (CSD) number 
system [10] or signed power-of-two (SPT) representation [1]. 

CSD representation [3] is a radix-two number system with digit 
set 1,0,1  that has the “canonical” property that no two 
consecutive bits in the CSD number are nonzero. For example, 
the 2’s complement number 10101101 01010101x , where 
“ 1 ” stands for “-1”. This representation replaces the additions 
arising from a string of ones in a binary number with a single 
subtraction, so that a multiplier can be realized by incorporating 
a few adders (or subtractors) and bit shifters. 

CSD representation has proven to be useful for 
implementing multipliers with less complexity, because the cost 
of multiplication is a direct function of the number of nonzero 
bits in the multiplier. It is shown in [4] that for a n-bit 2’s 
complement multiplier the number of add/subtract operations 
never exceeds n/2  and can be reduced to n/3 on average, as the 
wordlength of multiplier grows. Many researchers have 
addressed the question of how to convert 2’s complement to 
CSD numbers. Some of these approaches are from the point of 
view of reducing computational complexity [5][6], but are not 
suitable for implementation into hardware. Other approaches try 
to improve the implementation efficiency by limiting the area 
and power consumption [7][8]. However, some introduce errors, 
and others are still complex. 

If the multiplier is known a priori, as is the case for most 
filter implementations, the CSD expression can be calculated 
offline and the implementation can be further improved via 
computational techniques such as Dempster-Macleod’s 
algorithm [9]. Using this technique, more adders can be saved 
[10]. However, when the multiplier is unknown or can change 
over time, as is the case for adaptive filters, these techniques are 
not applicable. To benefit from the CSD implementation 
advantages, the conversion of numbers from 2’s complement to 
CSD format must be implemented in hardware. Unfortunately, 
the cost of conversion using methods such as those based on 
Look-Up-Table (LUT) [11] or Booth’s recoding techniques [1] 
often outweighs the implementation advantages of CSD. 

In this paper, we introduce a new hardware implementation 
method to convert 2’s complement numbers to CSD numbers.  
Our method has several advantages. First, unlike LUT methods, 
our technique does not require a fixed word length to be known 
a priori. In addition, our proposed method uses a limited number 
of shift and logic operations, instead of the overlap and scanning 
used for methods like Booth’s recording. This allows the number 
of computational cycles to be fixed and independent of the 
wordlength of the multiplier, k . So, the time required is 
constant. Furthermore, because all the CSD bits are produced 
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simultaneously, the conversion speed, and thus the throughput, 
is improved. 

Our method can be applied to efficiently implement digital 
filters with non-fixed coefficients, such as adaptive filters. The 
implementation can be further improved through the use of 
parallel processing with a reasonable sacrifice in the area 
consumption using FPGAs. 

This paper is organized as follows. Section 2 describes the 
new method to convert 2’s complement numbers to CSD 
numbers. Then, we compare our method with Booth’s recording 
and LUT techniques in section 3; Conclusions and future work 
are presented in section 4. 

2. NEW TWO’S COMPLEMENT TO CSD CONVERSION 
METHOD

Our method to convert a 2’s complement number to CSD 
representation is a simple series of shift and logic operations, 
which are implemented in six processing steps as shown in Fig. 
1 and described in the following paragraphs. 

Fig. 1 Block diagram for new 2’s complement to CSD 
conversion method 

Step 1: Transform x to difference form: x = 2x - x . In order 
to replace the additions arising from a string of ones in a binary 
number with a single subtraction, we use the simple 
concept 2x x x to convert x to another form, which contains 
pairs of “ 11” and “11 ”s. The difference form is a signed binary 

representation that can be written as of two binary numbers: the 
magnitude of x and the sign of x, which together represent the 
signed binary number. The ones in ( )sign x indicate which digit 
positions have a negative weight. This form can be computed 
simply with an arithmetic left by one bit 1x and bitwise logic 
operations:

Magnitude of x : 1x x x

Sign of x : ( ) ( 1) '&sign x x x
We can prove the following: 

Theorem 1: No two consecutive nonzero bits in the 
difference form of x have the same sign. 

Theorem 2: The difference form of x can be converted to 
the CSD form by replacing the sequences “ 11” with “ 01 ” and 
the sequence “11 ” with “ 01 ”. 
Step 2: Locating “ 11 ” and “ 11 ”s.  To locate the positions of 
the “ 11” and “11 ” strings, we find the digits that are ‘ 1 ’ from 
the ‘1’s in ( )sign x , then use “shift/and” operation to get two 
vectors A and B.

A= 1& ( )x sign x

where each ‘1’ in A corresponds to a string “ 11”. 
B= 1& ( )x sign x

where each ‘1’ in B corresponds to a string “11 ”. 
Note that 1x denotes a logical right shift by one bit. 

Theorem 3: Each ‘1’ in A denotes the position of a  “ 11” 
string in the difference form, and each ‘1’ in B corresponds to a 
string “11 ” in the difference form.

Lemma 3A: There are no consecutive ‘1’s in A or B.
Step 3: Generate mask vector M. (Note that steps 2 and 3 can 
be computed concurrently.) Step 2 replaces strings of ones with 
pairs of“ 11”s and “11 ”s. To achieve a CSD representation, we 
want to replace the strings “ 11” with “ 01 ” and “11 ” with 
“ 01 ” to eliminate consecutive nonzero bits. However, we 
cannot do both “ 11” to “ 01 ” and “11 ” to “ 01 ” 
transformations at the same time using simple logic operations; 
also, we cannot do the two operations sequentially. For example, 
if “111 ” and “ 111 ” exist in the same sequence, no matter 
which replacement we do first the result has consecutive nonzero 
bits, such as “011” or “ 011 ”. 

So we have to find a way out. This leads to theorem 4 as 
follows:

Theorem 4: The zero bits in the difference form of 
x correspond to zero digits in the CSD form. 

Based on Theorem 4, we observe that the zeros in the 
difference form of x separate the sequence into several parts. We 
want to transform “ 11” to “ 01 ” and “11 ” to “ 01 ” separately 
beginning with the nonzero bit adjacent to the ‘0’ (working from 
right to left). We form a mask vector M to separate the 
subsequences. M has the same length as x. Whenever the 
subsequence begins with ‘1’, the corresponding subsequence in
M is all ones, otherwise it is all zeros. For example, 
if 01100110111x , then 01100110000M .

Fig. 2 shows the hardware implementation of mask 
generator, where

''
11 1( )i i ii i i ix sign x x x xM M         (1) 
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Step 4: Separate two types of subsequences. Using
C= &A M we determine the subsequence “ 11”s since each ‘1’ 
in C stands for the pair “ 11”, at the corresponding position of 
‘ 1 ’. Note that there are no consecutive ‘1’s in C because of the 
inherited property of A. Similarly, using D= & ~B M , we can 
get determine the location of the “11 ” sequences. Also, there
are no consecutive ‘1’s in D.

Fig. 2.  The implementation of the mask generator 

Step 5: Convert 11  to 01 .We use C to do the convert the 
substrings “ 11” to “ 01 ” as follows:

( ) ( ) ( 1)
new

new

x x

sign x sign x

C

C | C >>
                (2) 

Step 6: Convert 11  to 01 . Similar to Step 5, we convert “11 ” 
to “ 01 ” using D as follows: 

                               
( ) ( )

( 1)
new

new

sign CSD sign x

CSD x

D
D

                      (3) 

Theorem 5: The algorithm described in Steps 1-6 generates the 
CSD representation of a number. 

Example: Fig. 3 shows the conversion of x=101110110 to CSD. 

3. COMPARISION WITH BOOTH RECODING AND LUT 
TECHNIQUES

The radix-4 modified Booth recoding algorithm has been widely 
used in modern high-speed multiplication circuits. Using a 
modified Booth algorithm, sequential 3-digit segments of two’s 
complement number are converted into the digit set 2, 1, 0 .
Although modified Booth’s recoding reduces a k-bit 2’s 
complement multiplier to 2k  digits, it is based on overlap 
multiple-bit scanning schemes. So, no matter how large the radix 
is, the number of scan cycles is a function of the multiplier word 
length k. As k increases, the number of scan cycles is increases 
as well. 

Our proposed method reduces the number of add/subtract 
operations to the minimum. Unlike the modified Booth recoding 
algorithm, the number of operations of our method is fixed. So, 
the total delay time is also fixed. So, the time is constant 
regardless of the word length k. The detailed performance 
analysis is given in Table 1. 

Compared with the modified Booth recoding algorithm 
whose operation time is a function of multiplier word length k,
our method only requires a delay of only 4 shifts and 8 logic 

gates for the worst case. Furthermore, the throughput can be 
further improved by incorporating parallel processing. Our 
method offers is attractive in terms of both throughput and 
computational complexity. 

x   1 0 1 1 1 0 1 1 0 1 0 1  
======================================
2 1x x  1 0 1 1 1 0 1 1 0 1 0 1 0 
- x   1 1 0 1 1 1 0 1 1 0 1 0 1   sign extension 
----------------------------------------------------------------
x   0 1 1 0 0 1 1 0 1 1 1 1 1
x   0 1 1 0 0 1 1 0 1 1 1 1 1 

( )sign x   0 1 0 0 0 1 0 0 1 0 1 0 1 
======================================

1x   1 1 0 0 1 1 0 1 1 1 1 1 0 
& ( )sign x  0 1 0 0 0 1 0 0 1 0 1 0 1 
----------------------------------------------------------------
A 0 1 0 0 0 1 0 0 1 0 1 0 0 
----------------------------------------------------------------

1x   0 0 1 1 0 0 1 1 0 1 1 1 1  
& ( )sign x  0 1 0 0 0 1 0 0 1 0 1 0 1 
----------------------------------------------------------------
B 0 0 0 0 0 0 0 0 0 0 1 0 1
======================================
M 0 1 1 0 0 1 1 0 0 0 0 0 0 
&A   0 1 0 0 0 1 0 0 1 0 1 0 0 
----------------------------------------------------------------
C 0 1 0 0 0 1 0 0 0 0 0 0 0 
----------------------------------------------------------------
B 0 0 0 0 0 0 0 0 0 0 1 0 1 
& ~ M   1 0 0 1 1 0 0 1 1 1 1 1 1
======================================
D 0 0 0 0 0 0 0 0 0 0 1 0 1 
======================================
x   0 1 1 0 0 1 1 0 1 1 1 1 1 

C   0 1 0 0 0 1 0 0 0 0 0 0 0 
----------------------------------------------------------------

newx   0 0 1 0 0 0 1 0 1 1 1 1 1  
----------------------------------------------------------------

( )sign x   0 1 0 0 0 1 0 0 1 0 1 0 1 
C   0 1 0 0 0 1 0 0 0 0 0 0 0   

----------------------------------------------------------------
0 0 0 0 0 0 0 0 1 0 1 0 1 

( 1)| C  0 0 1 0 0 0 1 0 0 0 0 0 0  
======================================

( )newsign x  0 0 1 0 0 0 1 0 1 0 1 0 1 
D 0 0 0 0 0 0 0 0 0 0 1 0 1 

----------------------------------------------------------------
( )sign CSD  0 0 1 0 0 0 1 0 1 0 0 0 0 

----------------------------------------------------------------
1D   0 0 0 0 0 0 0 0 0 1 0 1 0 

newx   0 0 1 0 0 0 1 0 1 1 1 1 1 
----------------------------------------------------------------
CSD   0 0 1 0 0 0 1 0 1 0 1 0 1 

CSD 0 0 1 0 0 0 1 0 1 0 1 0 1

Fig. 3.  An example of new 2’s compliment to CSD conversion 
process (the double dash line separate each step) 

Another commonly used technique for FPGA-based 
hardware is Look-Up-Table (LUT) [10], [14]. Many algorithms 
used in DSP, such as filters, are based on constant coefficient 
values. So, a Look-Up-Table can be used to implement the 
multiplier by storing pre-computed partial products of the fixed 
coefficient in distributed ROM to reduce the logic content. An 
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advantage of this approach is that the delay is just a memory 
access; so it is fast. However, a disadvantage is that the table 
size grows exponentially with the input, so it is space-intensive. 
So, a LUT approach requires the multiplier’s word length to be 
fixed and the value of multiplier to be known prior to 
implementation. 

Table 1. Performance analysis of the new 2’s to CSD conversion 
method ( indicates the most costful operations in each step, 

notice: Step 2 and Step 3 can be done simultaneously) 

Operations # of 
Shifts

# of logic 
operations

A/M= 
all{0} 

B=all{0}/
M=all{1}

The 
worst 
case

Step
1

1x x x

( ) ( 1) '&sign x x x

1

1

1

2

Step
2

1& ( )

1& ( )

x sign x

x sign x

A

B
1

1

1

1

Step
3

1

1 1

''( )
i i

i i

ii i

x sign x x

x x

M

M
 3    

Step
4

C= &A M

D= & ~B M

1

2

Step
5 ( ) ( ) ( 1)

new

new

x x

sign x sign x

C

C| C >> 1

1

2

Step
6

( ) ( )
( 1)

new

new

sign CSD sign x

CSD x

D
D 1

1

1

Total cost of delay   
3 shifts 

+ 4 
logics

3 shifts 
+ 5 

logics

4 shifts 
+ 8 

logics

Our method does not have the disadvantages of the LUT 
implementation. We do not require a fixed multiplier word 
length, nor is it required for the multiplier value to be known a
priori. Thus, our method can be applied to efficiently implement 
digital filters with non-fixed coefficients, such as adaptive 
filters. In addition, our method is simple, requiring only several 
shifts and logic operations. Since our method produces all of the 
CSD digits simultaneously, the conversion speed, and thus the 
throughput, is improved. 

4. CONCLUSIONS AND FUTURE WORK 

The implementation of adaptive filters cannot benefit from fast, 
low area filter design techniques that use a priori information 
about the filter coefficients. We propose a novel implementation 
technique that can be used to construct general multipliers which 
require less area and achieve higher throughput rates. Our 
method for converting a number from two’s complement 
representation to CSD representation can be used to implement 
adaptive filters in FPGAs or other custom hardware. 
Performance analysis indicates that our design provides better 
results than are currently available considering both the 
conversion speed and the computational complexity. Since our 

technique does not require a specific word length for the 
multiplier and does not depend on prior knowledge of the 
multiplier value, it has broad applications. Our method only 
requires several shifts and logic operations, so we have 
effectively reduced the complexity of the hardware 
implementation compared to conventional methods, such as 
modified Booth recoding and Look-Up-Table based techniques. 
The throughput of our implementation can be further improved 
by incorporating parallel processing with only a modest increase 
in area. We believe that the proposed method will have broad 
applications in hardware implementations of many DSP 
algorithms and other multiplication intensive applications, but 
most especially the implementation of adaptive filters. 

We plan to incorporate our method into a multi-input CSD 
multiplier unit, similar to that proposed in [12], which requires 
all the CSD digits to be converted simultaneously. This new 
multi-input CSD multiplier circuit will allow the construction of 
high throughput adaptive filters in FPGAs or other custom 
hardware under practical time, space and power constraints. 
Detailed area and power analysis can be assessed after 
completion of the implementation.  
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