
A NOVEL MULTIPLIERLESS HARDWARE IMPLEMENTATION METHOD FOR ADAPTIVE
FILTER COEFFICIENTS

Yunhua Wang1, Linda S. DeBrunner2, Dayong Zhou1, Victor E. DeBrunner2,

1School of Electrical & Computer Engineering
University of Oklahoma
Norman, OK 73019 USA
{xiao9, dayong}@ou.edu

2Department of Electrical & Computer Engineering
FAMU-FSU College of Engineering

Tallahassee, FL 32310 USA
{linda.debrunner, victor.debrunner}@eng.fsu.edu

ABSTRACT

Adaptive filter implementations require real-time conversion of
coefficients to Canonical Signed Digit (CSD) or similar
representations to benefit from multiplierless techniques for
implementing filters. Multiplierless approaches are used to reduce the
hardware and increase the throughput. This paper introduces a
novel hardware implementation method that converts two’s
complement numbers to their CSD representations using a fixed
number of shift and logic operations. As a result, we can greatly
reduce the power consumption and area requirements for
hardware implementation of DSP algorithms in which
coefficients are not known a priori. Because all CSD digits are
produced simultaneously, the conversion speed and thus the
throughput are improved when compared to overlap-and-scan
techniques such as Booth’s recoding.

Index Terms—adaptive filters, field programmable gate
arrays, digital arithmetic.

1. INTRODUCTION

“Implementation is everything” in the construction of practical
adaptive filters [13]. These practical hardware implementations
typically require high throughput, low power consumption and
small area. For fixed coefficient filters, multiplierless
implementation approaches are used. However, since the
coefficients of an adaptive filter are not fixed, general
multipliers are needed. Multipliers are expensive in terms of
chip area, power consumption, and operation time. For practical
high performance adaptive filters, this limitation must be
overcome.

Multipliers are typically implemented in hardware using
shift-and-add techniques. The number of add operations depends
on the number of 1’s in the binary multiplier. The number of
add/shift operations is directly related to the power consumption
and area required. Array techniques are used to achieve high
throughput, at the cost of significant increases in power and area.

One effective method to reduce the number of shift/add
operations in multiplier hardware is to reduce the wordlength of
the multipliers (e.g. filter coefficients). However, reducing the
wordlength can significantly degrade the performance of the
implemented algorithm.

When the value of the multiplier is known, multiplication
can be implemented using alternate number representations for
the multiplier, such as the canonical signed digit (CSD) number
system [10] or signed power-of-two (SPT) representation [1].

CSD representation [3] is a radix-two number system with digit
set 1,0,1 that has the “canonical” property that no two
consecutive bits in the CSD number are nonzero. For example,
the 2’s complement number 10101101 01010101x , where
“ 1 ” stands for “-1”. This representation replaces the additions
arising from a string of ones in a binary number with a single
subtraction, so that a multiplier can be realized by incorporating
a few adders (or subtractors) and bit shifters.

CSD representation has proven to be useful for
implementing multipliers with less complexity, because the cost
of multiplication is a direct function of the number of nonzero
bits in the multiplier. It is shown in [4] that for a n-bit 2’s
complement multiplier the number of add/subtract operations
never exceeds n/2 and can be reduced to n/3 on average, as the
wordlength of multiplier grows. Many researchers have
addressed the question of how to convert 2’s complement to
CSD numbers. Some of these approaches are from the point of
view of reducing computational complexity [5][6], but are not
suitable for implementation into hardware. Other approaches try
to improve the implementation efficiency by limiting the area
and power consumption [7][8]. However, some introduce errors,
and others are still complex.

If the multiplier is known a priori, as is the case for most
filter implementations, the CSD expression can be calculated
offline and the implementation can be further improved via
computational techniques such as Dempster-Macleod’s
algorithm [9]. Using this technique, more adders can be saved
[10]. However, when the multiplier is unknown or can change
over time, as is the case for adaptive filters, these techniques are
not applicable. To benefit from the CSD implementation
advantages, the conversion of numbers from 2’s complement to
CSD format must be implemented in hardware. Unfortunately,
the cost of conversion using methods such as those based on
Look-Up-Table (LUT) [11] or Booth’s recoding techniques [1]
often outweighs the implementation advantages of CSD.

In this paper, we introduce a new hardware implementation
method to convert 2’s complement numbers to CSD numbers.
Our method has several advantages. First, unlike LUT methods,
our technique does not require a fixed word length to be known
a priori. In addition, our proposed method uses a limited number
of shift and logic operations, instead of the overlap and scanning
used for methods like Booth’s recording. This allows the number
of computational cycles to be fixed and independent of the
wordlength of the multiplier, k . So, the time required is
constant. Furthermore, because all the CSD bits are produced

II ­ 571­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

simultaneously, the conversion speed, and thus the throughput,
is improved.

Our method can be applied to efficiently implement digital
filters with non-fixed coefficients, such as adaptive filters. The
implementation can be further improved through the use of
parallel processing with a reasonable sacrifice in the area
consumption using FPGAs.

This paper is organized as follows. Section 2 describes the
new method to convert 2’s complement numbers to CSD
numbers. Then, we compare our method with Booth’s recording
and LUT techniques in section 3; Conclusions and future work
are presented in section 4.

2. NEW TWO’S COMPLEMENT TO CSD CONVERSION
METHOD

Our method to convert a 2’s complement number to CSD
representation is a simple series of shift and logic operations,
which are implemented in six processing steps as shown in Fig.
1 and described in the following paragraphs.

Fig. 1 Block diagram for new 2’s complement to CSD
conversion method

Step 1: Transform x to difference form: x = 2x - x . In order
to replace the additions arising from a string of ones in a binary
number with a single subtraction, we use the simple
concept 2x x x to convert x to another form, which contains
pairs of “ 11” and “11 ”s. The difference form is a signed binary

representation that can be written as of two binary numbers: the
magnitude of x and the sign of x, which together represent the
signed binary number. The ones in ()sign x indicate which digit
positions have a negative weight. This form can be computed
simply with an arithmetic left by one bit 1x and bitwise logic
operations:

Magnitude of x : 1x x x

Sign of x : () (1) '&sign x x x
We can prove the following:

Theorem 1: No two consecutive nonzero bits in the
difference form of x have the same sign.

Theorem 2: The difference form of x can be converted to
the CSD form by replacing the sequences “ 11” with “ 01 ” and
the sequence “11 ” with “ 01 ”.
Step 2: Locating “ 11 ” and “ 11 ”s. To locate the positions of
the “ 11” and “11 ” strings, we find the digits that are ‘ 1 ’ from
the ‘1’s in ()sign x , then use “shift/and” operation to get two
vectors A and B.

A= 1& ()x sign x

where each ‘1’ in A corresponds to a string “ 11”.
B= 1& ()x sign x

where each ‘1’ in B corresponds to a string “11 ”.
Note that 1x denotes a logical right shift by one bit.

Theorem 3: Each ‘1’ in A denotes the position of a “ 11”
string in the difference form, and each ‘1’ in B corresponds to a
string “11 ” in the difference form.

Lemma 3A: There are no consecutive ‘1’s in A or B.
Step 3: Generate mask vector M. (Note that steps 2 and 3 can
be computed concurrently.) Step 2 replaces strings of ones with
pairs of“ 11”s and “11 ”s. To achieve a CSD representation, we
want to replace the strings “ 11” with “ 01 ” and “11 ” with
“ 01 ” to eliminate consecutive nonzero bits. However, we
cannot do both “ 11” to “ 01 ” and “11 ” to “ 01 ”
transformations at the same time using simple logic operations;
also, we cannot do the two operations sequentially. For example,
if “111 ” and “ 111 ” exist in the same sequence, no matter
which replacement we do first the result has consecutive nonzero
bits, such as “011” or “ 011 ”.

So we have to find a way out. This leads to theorem 4 as
follows:

Theorem 4: The zero bits in the difference form of
x correspond to zero digits in the CSD form.

Based on Theorem 4, we observe that the zeros in the
difference form of x separate the sequence into several parts. We
want to transform “ 11” to “ 01 ” and “11 ” to “ 01 ” separately
beginning with the nonzero bit adjacent to the ‘0’ (working from
right to left). We form a mask vector M to separate the
subsequences. M has the same length as x. Whenever the
subsequence begins with ‘1’, the corresponding subsequence in
M is all ones, otherwise it is all zeros. For example,
if 01100110111x , then 01100110000M .

Fig. 2 shows the hardware implementation of mask
generator, where

''
11 1()i i ii i i ix sign x x x xM M (1)

II ­ 58

Step 4: Separate two types of subsequences. Using
C= &A M we determine the subsequence “ 11”s since each ‘1’
in C stands for the pair “ 11”, at the corresponding position of
‘ 1 ’. Note that there are no consecutive ‘1’s in C because of the
inherited property of A. Similarly, using D= & ~B M , we can
get determine the location of the “11 ” sequences. Also, there
are no consecutive ‘1’s in D.

Fig. 2. The implementation of the mask generator

Step 5: Convert 11 to 01 .We use C to do the convert the
substrings “ 11” to “ 01 ” as follows:

() () (1)
new

new

x x

sign x sign x

C

C | C >>
 (2)

Step 6: Convert 11 to 01 . Similar to Step 5, we convert “11 ”
to “ 01 ” using D as follows:

() ()

(1)
new

new

sign CSD sign x

CSD x

D
D

 (3)

Theorem 5: The algorithm described in Steps 1-6 generates the
CSD representation of a number.

Example: Fig. 3 shows the conversion of x=101110110 to CSD.

3. COMPARISION WITH BOOTH RECODING AND LUT
TECHNIQUES

The radix-4 modified Booth recoding algorithm has been widely
used in modern high-speed multiplication circuits. Using a
modified Booth algorithm, sequential 3-digit segments of two’s
complement number are converted into the digit set 2, 1, 0 .
Although modified Booth’s recoding reduces a k-bit 2’s
complement multiplier to 2k digits, it is based on overlap
multiple-bit scanning schemes. So, no matter how large the radix
is, the number of scan cycles is a function of the multiplier word
length k. As k increases, the number of scan cycles is increases
as well.

Our proposed method reduces the number of add/subtract
operations to the minimum. Unlike the modified Booth recoding
algorithm, the number of operations of our method is fixed. So,
the total delay time is also fixed. So, the time is constant
regardless of the word length k. The detailed performance
analysis is given in Table 1.

Compared with the modified Booth recoding algorithm
whose operation time is a function of multiplier word length k,
our method only requires a delay of only 4 shifts and 8 logic

gates for the worst case. Furthermore, the throughput can be
further improved by incorporating parallel processing. Our
method offers is attractive in terms of both throughput and
computational complexity.

x 1 0 1 1 1 0 1 1 0 1 0 1
======================================
2 1x x 1 0 1 1 1 0 1 1 0 1 0 1 0
- x 1 1 0 1 1 1 0 1 1 0 1 0 1 sign extension
--
x 0 1 1 0 0 1 1 0 1 1 1 1 1
x 0 1 1 0 0 1 1 0 1 1 1 1 1

()sign x 0 1 0 0 0 1 0 0 1 0 1 0 1
======================================

1x 1 1 0 0 1 1 0 1 1 1 1 1 0
& ()sign x 0 1 0 0 0 1 0 0 1 0 1 0 1
--
A 0 1 0 0 0 1 0 0 1 0 1 0 0
--

1x 0 0 1 1 0 0 1 1 0 1 1 1 1
& ()sign x 0 1 0 0 0 1 0 0 1 0 1 0 1
--
B 0 0 0 0 0 0 0 0 0 0 1 0 1
======================================
M 0 1 1 0 0 1 1 0 0 0 0 0 0
&A 0 1 0 0 0 1 0 0 1 0 1 0 0
--
C 0 1 0 0 0 1 0 0 0 0 0 0 0
--
B 0 0 0 0 0 0 0 0 0 0 1 0 1
& ~ M 1 0 0 1 1 0 0 1 1 1 1 1 1
======================================
D 0 0 0 0 0 0 0 0 0 0 1 0 1
======================================
x 0 1 1 0 0 1 1 0 1 1 1 1 1

C 0 1 0 0 0 1 0 0 0 0 0 0 0
--

newx 0 0 1 0 0 0 1 0 1 1 1 1 1
--

()sign x 0 1 0 0 0 1 0 0 1 0 1 0 1
C 0 1 0 0 0 1 0 0 0 0 0 0 0

--
0 0 0 0 0 0 0 0 1 0 1 0 1

(1)| C 0 0 1 0 0 0 1 0 0 0 0 0 0
======================================

()newsign x 0 0 1 0 0 0 1 0 1 0 1 0 1
D 0 0 0 0 0 0 0 0 0 0 1 0 1

--
()sign CSD 0 0 1 0 0 0 1 0 1 0 0 0 0

--
1D 0 0 0 0 0 0 0 0 0 1 0 1 0

newx 0 0 1 0 0 0 1 0 1 1 1 1 1
--
CSD 0 0 1 0 0 0 1 0 1 0 1 0 1

CSD 0 0 1 0 0 0 1 0 1 0 1 0 1

Fig. 3. An example of new 2’s compliment to CSD conversion
process (the double dash line separate each step)

Another commonly used technique for FPGA-based
hardware is Look-Up-Table (LUT) [10], [14]. Many algorithms
used in DSP, such as filters, are based on constant coefficient
values. So, a Look-Up-Table can be used to implement the
multiplier by storing pre-computed partial products of the fixed
coefficient in distributed ROM to reduce the logic content. An

II ­ 59

advantage of this approach is that the delay is just a memory
access; so it is fast. However, a disadvantage is that the table
size grows exponentially with the input, so it is space-intensive.
So, a LUT approach requires the multiplier’s word length to be
fixed and the value of multiplier to be known prior to
implementation.

Table 1. Performance analysis of the new 2’s to CSD conversion
method (indicates the most costful operations in each step,

notice: Step 2 and Step 3 can be done simultaneously)

Operations # of
Shifts

of logic
operations

A/M=
all{0}

B=all{0}/
M=all{1}

The
worst
case

Step
1

1x x x

() (1) '&sign x x x

1

1

1

2

Step
2

1& ()

1& ()

x sign x

x sign x

A

B
1

1

1

1

Step
3

1

1 1

''()
i i

i i

ii i

x sign x x

x x

M

M
 3

Step
4

C= &A M

D= & ~B M

1

2

Step
5 () () (1)

new

new

x x

sign x sign x

C

C| C >> 1

1

2

Step
6

() ()
(1)

new

new

sign CSD sign x

CSD x

D
D 1

1

1

Total cost of delay
3 shifts

+ 4
logics

3 shifts
+ 5

logics

4 shifts
+ 8

logics

Our method does not have the disadvantages of the LUT
implementation. We do not require a fixed multiplier word
length, nor is it required for the multiplier value to be known a
priori. Thus, our method can be applied to efficiently implement
digital filters with non-fixed coefficients, such as adaptive
filters. In addition, our method is simple, requiring only several
shifts and logic operations. Since our method produces all of the
CSD digits simultaneously, the conversion speed, and thus the
throughput, is improved.

4. CONCLUSIONS AND FUTURE WORK

The implementation of adaptive filters cannot benefit from fast,
low area filter design techniques that use a priori information
about the filter coefficients. We propose a novel implementation
technique that can be used to construct general multipliers which
require less area and achieve higher throughput rates. Our
method for converting a number from two’s complement
representation to CSD representation can be used to implement
adaptive filters in FPGAs or other custom hardware.
Performance analysis indicates that our design provides better
results than are currently available considering both the
conversion speed and the computational complexity. Since our

technique does not require a specific word length for the
multiplier and does not depend on prior knowledge of the
multiplier value, it has broad applications. Our method only
requires several shifts and logic operations, so we have
effectively reduced the complexity of the hardware
implementation compared to conventional methods, such as
modified Booth recoding and Look-Up-Table based techniques.
The throughput of our implementation can be further improved
by incorporating parallel processing with only a modest increase
in area. We believe that the proposed method will have broad
applications in hardware implementations of many DSP
algorithms and other multiplication intensive applications, but
most especially the implementation of adaptive filters.

We plan to incorporate our method into a multi-input CSD
multiplier unit, similar to that proposed in [12], which requires
all the CSD digits to be converted simultaneously. This new
multi-input CSD multiplier circuit will allow the construction of
high throughput adaptive filters in FPGAs or other custom
hardware under practical time, space and power constraints.
Detailed area and power analysis can be assessed after
completion of the implementation.

5. REFERENCES

[1] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs. London, Oxford Press, 1999.

[2] C. L. Chen, K. Y. Khoo, and A. N. Willson, Jr., “A
simplified signed powers-of-two conversion for
multiplierless adaptive filters,” ISCAS’96, May 1996.

[3] P. Pirsch, Architectures for Digital Signal Processing, John
Wiley & Sons, 1998.

[4] G. K. Ma and F. J. Taylor, “Multiplier policies for digital
signal processing,” IEEE ASSP Mag., pp. 6-20, Jan 1990.

[5] F. Xu, C. Chang and C. Jong, “HWP: a new insight into
canonical signed digit,” ISCAS'04, May 2004.

[6] R. Hashemian, “A new method for conversion of a 2's
complement to canonic signed digit number system and its
representation,” in Proc. Asilomar Conf. Signals, Syst.,
Computers, 1997, pp. 904-907.

[7] G.A. Ruiz and M.A. Manzano, "Self-Timed Multiplier
Based on Canonical Signed-Digit Recoding," IEE Proc.,
Circuits, Devices, and Systems, vol. 148, no. 5, Oct. 2001,
pp. 235-241.

[8] S. M. Kim, J. G. Chung, and K. K. Parhi, “Design of low
error CSD fixed-width multiplier,” in Proc. 2002 IEEE
ISCAS Scottsdale, AZ, May 2002, pp. I-69-I-72.

[9] A. G. Dempster and M. D. Macleod, "Constant integer
multiplication using minimum adders," IEE Proceedings:
Circuits, Devices and Systems, vol. 141, pp. 407-413, 1994.

[10] M. A. Soderstrand, “CSD multipliers for FPGA DSP
applications,” ISCAS’03, May 2003.

[11] K. Chapman, “Building high performance FIR filter using
KCM,” Xilinx Ltd-UK, July 1996.

[12] Y. Wang, L. S. DeBrunner, V. E. DeBrunner, and D. Zhou,
"A Multi-input multiplier unit suitable for DSP algorithm
implementations," Asilomar Conference on Signals,
Systems and Computers, Oct. 2006.

[13] John Treichler, plenary comments, IEEE 2006 DSP
Workshop, Jackson, Wyoming, Sept. 2006.

[14] Bill Allaire and Bud Fischer, “Block adaptive filter,” Xilinx
Application Note, XAPP 055, version 1.1, January 1997.

II ­ 60

