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ABSTRACT
 

In this paper, we propose a novel finite impulse response (FIR) 
filter design methodology that reduces the number of operations 
with a motivation to reduce power consumption and enhance 
performance. The novelty of our approach lies in the generation of 
filter coefficients such that they conform to a given low-power 
architecture, while meeting the given filter specifications. The 
proposed algorithm is formulated as a mixed integer linear 
programming problem that minimizes chebychev error and 
synthesizes coefficients which consist of pre-specified alphabets. 
The new modified coefficients can be used for low-power VLSI 
implementation of vector scaling operations such as FIR filtering 
using computation sharing multiplier (CSHM). Simulations in 
0.25um technology show that CSHM FIR filter architecture can 
result in 55% power and 34% speed improvement compared to 
carry save multiplier (CSAM) based filters. 
 

Index Terms— Multiplierless digital filter design, low power, 
chebychev criterion, optimization methods 

 
1. INTRODUCTION

With the continual need for improving the data rates at reduced 
power dissipation, the need for improved complexity reduction 
schemes for Digital Signal Processing (DSP) systems still persists 
today. One of the most widely used operations performed in DSP 
and most common in multiple constant multiplication (MCM) 
problems, referred to the multiplication of a variable by a set of 
constants is FIR filtering. Simple low-complexity implementations 
of digital filters using signed powers-of-two (SPT) [1], canonical 
signed digit (CSD) [2] and minimal signed digit (MSD) [3] number 
representations have been reported by many researchers. The 
optimization of MCM operation has often been accomplished by 
using shift-and-add multiplication algorithms with common sub 
expression elimination (CSE) [4].  Many approaches [5] start from 
a given optimal filter solution and find different quantization 
schemes that reduce the implementation cost in the vicinity of an 
optimal solution. Such schemes applied in post-synthesis phase of 
FIR filters, although simple, cannot guarantee an optimal solution 
with the desired frequency response. 

In this paper, we explore complexity reduction in FIR filters 
from the point of view of removing computational redundancy in 
the synthesis phase of multiplierless filters, rather than following 
the traditional post-synthesis approach. Given a filter specification 
and a “pre-specified set of alphabets” (the details of which will be 
explained shortly) we synthesize “modified coefficients” so that 
proper trade-off between computation/communication complexity 
and filter quality can be made. Instead of trying to eliminate the  
 
 

common sub-expressions in the coefficient vector, we propose an 
algorithm that slightly modifies the coefficients and satisfies the 
filter design constraints. The new coefficient vector reduces 
redundant computation and is suitable for the implementation of 
filters with CSHM architecture which increases computation re-
usability and power savings compared to other architectures [6]. 
     The rest of this paper is organized as follows. In section 2 
vector scaling operation and a review of CSHM architecture is 
presented. Section 3 presents optimal FIR filter design. Section 4 
describes the proposed approach and compares the results of 
different synthesized filters.  In section 5 the implementation of 
CSHM FIR filters using different alphabets and modified 
coefficients is compared to CSAM based filters. Finally, 
conclusions are drawn in section 6.   

2. VECTOR SCALING AND CSHM ARCHITECTURE 

The multiplication of vectors by scalars is referred as vector 
scaling operation. For instance, multiplication of a coefficient 
vector C= [c0, c1,…, cM-1] with a scalar x(n) is a vector scaling 
operation which is commonly used in DSP tasks such as filtering 
and matrix multiplication. In vector scaling operations, we can 
decompose any scalar si to smaller bit sequences ak such that si can 
be rebuilt from these sequences by few shifts and adds. A 
decomposition of a simple vector scaling operation [c0, c1]  x, is 
shown in Table 1. If (0001)x, (0011)x, (0111)x, (1011)x are 
available, the entire multiplication is reduced to a few add and 
shift operations. We refer to these smaller bit sequences ak, as 
alphabets. Also, an alphabet set is a set of alphabets that spans all 
the coefficients in vector C. In the above example the alphabet set 
is {1, 3, 7, 11}.  
       CSHM architecture is based on the algorithm explained above. 
CSHM is composed of a precomputer, select units and final adder 
(SSA) as shown in Fig. 1. The precomputer computes the 
multiplication of alphabets and input vector X in advance and store 
them for re-use. When a scalar comes in, it is divided into smaller 
bit sequences that have the same length as that of an alphabet. The 
Shift unit, right shifts these sequences to determine the matching 
alphabet and generates control signals which are the index signal 
to the mux and the shift signal to the ISHIFT. A 2-to-1 mux takes 
care of the zero (0000) coefficient value determined by a select 
signal, sent by the Shift unit. The A:1 mux, where A defines the 
number of alphabets used, selects one precomputed value based on 
the index signal. The ISHIFT unit, correspondingly, left shifts the 
selected value from the A:1 mux. Finally, the output values are 
properly shifted and added to generate the final result. 

Table 1: Vector scaling operation 
Coefficients Decomposition 

c0=01100111  (103) c0 x = 25 (0011) x + (0111) x 
c1=10001011  (139) c1 x = 27 (0001) x + (1011) x This research was sponsored in part by Semiconductor 

Research Corporation (1122.001). 

II ­ 491­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



minimize  ( ) max ( ) ( ) ( )E W D G                  (OE.1) 

             where : set of disjoint frequency bands in the range 0      

s.t.      
1

1
2

0

( )( )2cos(2 ( ) ) ( )
( )

N

k

E
h k n k D

W
      (1) 

1
1
2

0

( )( )2cos(2 ( ) ) ( )
( )

N

k

E
h k n k D

W
    (2) 

 
Fig. 1: Computation sharing multiplier implementation (A=4) 

In order to cover all possible coefficients and to perform 
general multiplication operation efficiently, 8 alphabets 
{1,3,5,7,9,11,13,15} can be used [7]. It should be noted that the 
number of alphabets directly translates to power dissipation of the 
pre-computer unit, while the number of communication buses 
(coming out of the precomputer) is also proportional to the number 
of alphabets. However, for non-adaptive filters, the number of 
coefficients can possibly be reduced to achieve lower routing 
complexity and lower power dissipation and is the subject of 
discussions in section 4. 

3. FIR FILTER DESIGN 

FIR filters have been traditionally designed using optimization 
techniques with the objective of reducing the difference between 
the desired frequency response and the computer generated filter. 
Usually this difference is specified as a weighted function given by 
E( )=W( )[H(ej )-D(ej )], where H(ej ) denotes the frequency 
response of the digital transfer function to be designed, D(ej ) is 
the desired frequency response and W( ) is a positive weighting 
function [8]. A commonly used approximation measure is the 
Chebychev or min-max criterion which is the objective function 
(OE.1) of the optimal linear phase FIR filter design problem that 
can be stated as: find a set of coefficients h(k) that minimizes the 
maximum-weighted absolute error defined as: 
         
           
 

 
 
 
The above formulation corresponds to design of even order (N) 
linear phase filters. There are four different kinds of transfer 
functions for linear phase filter design. The above formulation can 
be extended easily to all four cases by substituting constraints 1 
and 2 with the appropriate equations, presented in [9].  

4. PROPOSED OPTIMAL ALGORITHM 

4.1 Problem definition

As noted above, earlier approaches have tried to optimize MCM 
operation starting from a given coefficient vector (post-synthesis 
phase). Given a filter specification, our aim is to generate filter 

coefficients in the synthesis phase that can be used for the 
implementation of multiplierless filters, specifically CSHM filters 
which have shown increased power and speed improvement than 
earlier implementations. However, earlier approaches to CSHM 
based filter [7] used pre-specified fixed coefficients and the 
complete set of 8 alphabets for its implementation. The novelty of 
our approach lies in the generation of coefficients such that they 
conform to a given low-power architecture, while meeting the 
given filter specifications by using the pre-specified “good 
alphabets.” Hence, proper trade-off between computation/ 
communication complexity and filter quality can be made and 
CHSM based filters can be implemented using fewer alphabets. 
For instance in the example of section 2, if we select to use the 
alphabet set {1, 3}, then the coefficient vector has to be slightly 
modified to c0=01101000 (104), c1=01100110 (138). As a result 
we need only two precomputer banks instead of four. This reduces 
the power required to operate these units. Also, power dissipation 
depends on the signal switching activity [10]. By selecting 
alphabets that have fewer number of ones, such as {1, 3, 5} we 
expect power consumption to be further reduced.  
    Two types of filter coefficient synthesis methodologies are more 
commonly used than others. They include i) optimal techniques, 
such as those based on Mixed-Integer Linear Programming (MILP) 
and ii) suboptimal techniques which include local search and 
stochastic optimization. As an exhaustive search method, MILP 
guarantees the optimal solution, but the computational time 
increases with the number of filter taps. On the other hand, local 
search methods can find a ‘good’ solution, in reasonable time, but 
might be far from the optimal. Therefore, we formulate the 
assignment of alphabets to coefficients as MILP which can be 
solved by using branch and bound technique [11]. However, in 
order to use branch and bound technique for the optimal solution, 
we need to impose certain constraints on the MILP formulation. 

 4.2 Algorithm Description and MILP Constraints 

In this section, each step of the optimization algorithm and the 
corresponding MILP constraints are described. The proposed idea 
is illustrated in Fig. 2 and can be separated into two phases. 
    In phase 1, the filter characteristics and the parameters of the 
algorithm are given as inputs. These include the order N of the 
filter, the passband and stopband frequencies, the desired 
frequency response D(ej ) and the number of bits L and W that 
represent the coefficients and the alphabets respectively. Note that 
we classify the alphabets into 4 groups (Gset in Fig. 2) based on 
the following considerations: (a) number of ones in each alphabet 
and (b) number of shifted values that each alphabet can produce. 
The vector of the input alphabets, Aset is selected from the Gset 
groups. Coefficients are represented in sign magnitude format. 
     In phase 2, each coefficient is synthesized using the pre- 
specified set of alphabets, Aset, conforming to the given filter 
characteristics. This phase can be divided into five steps:   
Step 1: A vector Vset containing the shifted values of input 
alphabets Aset is generated. Consider for instance alphabets 1, 3, 5 
and 7. The resulting Vset for these alphabets is shown in Fig. 2. 
We note that by selecting alphabets that have less numbers of ones 
(refer to Section 4.1), power consumption can be reduced.  
Step 2: Each L-bit coefficient is represented by S= L/W sections. 
Each section ni, i=0,..,S consists of a W-bit sub-expression which 
represents an alphabet or one of its shifted values. 
Step 3: Assignment of the alphabets or their shifted values from 
Vset to each section ni of each coefficient. To represent this step, in  
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Fig. 2: Composition of each coefficient 

the MILP formulation, we impose the following constraints: 
    For each section i : 
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where seli are binary (0-1) variables, and ni represent sections of 
each coefficient. We impose constraint 4 in order to ensure that 
only one shifted value of the alphabets is assigned to each section. 
For instance, if we consider the 1st section (i=1) of the 1st 
coefficient (k=0) and assume A=4, the constraint 4 will be:  
sel0,0 + sel0,1 + sel0,2 + sel0,3 = 1.  This expression together with 
constraint 5 ensures that only one of the 0-1 variables is equal to 1 
and hence, only one alphabet a is assigned to section i=1. 
Step 4: Each section is multiplied by a factor 2i*W to determine the 
significance of each section (location) and for shifting them 
properly to compose each coefficient (Table 1). For instance if 
L=12 bits are used for the representation of the coefficients and 
each section is represented by W=4 bits then each coefficient 
consists of S=3 sections. The least significant section, n0 is 
multiplied by 1, the next section n1 is multiplied by 16 (shifted by 
4) and the most significant n2 by 256 (shifted by 8). We note that 
scaling the output preserves the filter characteristics, but results in 
an overall magnitude gain equal to the scale factor [8]. 
Step 5: Finally the shifted sections from step 4 are added together 
to represent the coefficients. The constraint that we have to impose 
in MILP formulation to implement steps 4 and 5 is given as: 
    For each coefficient k:  
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0
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where sign denotes the signs of the coefficients. Note that steps 4 
and 5 combined with step 3 can be seen as an iterative procedure 
where in each iteration only one alphabet is selected and assigned 
to each section, the combination of which compose new 
coefficients.  
     Following earlier post-synthesis approaches, we can start from 
a given optimal filter solution and apply the above procedure. In 
this case the iteration stops when the difference between the 
desired and the new composed coefficients is minimized. However 
such an approach does not have much control over any changes in 
filter specification due to the changes in filter coefficients.  
4.3 Final MILP Problem Formulation
In this section, we present the overall optimization algorithm. As 
we noted, the aim of our approach is to guarantee the optimality of 
the filter response. Therefore, it is necessary to combine the 
optimal initial filter design procedure (OE.1, constraints 1, 2) with 
the alphabet restrictions (constraints 3-5) described in the previous 

section. The problem now becomes a complex discrete 
optimization problem and can be stated as follows:           
Determine the set of coefficients h(k) that consist of specific sub-
expressions (or sections) by satisfying the alphabet constraints and 
minimizing the maximum-weighted absolute error.  
      In order to reduce the complexity of this nonlinear problem 
and formulate it as MILP problem, we linearize the maximum 
weighted absolute error which is the objective function given in 
OE.1, by introducing two positive variables e1( ) and e2( ). As a 
result, the objective function 1 (OE.1) is substituted by constraints 
6, 7 and the final formulation with the new objective function 
(chebychev criterion) is given by:  

minimize   E( )                                                     (OE.2) 
      s.t.                                                                       (6) 

                                                                              (7) 

combined with constraints 1 to 5 which have already been 
discussed in previous sections. 

4.4 Results 

In this section we present results to demonstrate the power and 
potential of the proposed approach. We have implemented linear 
filters of even order, by using different alphabet sets and the errors 
in the objective function (OE.2 - chebychev error) scaled by 103 
are presented in Table 2. Also, different bit widths were used for 
the representation of the synthesized coefficients.  
     A closer observation of Table 2 reveals some interesting results. 
First, as expected, with a larger alphabet set, the difference 
between the initial frequency response and the acquired solution 
reduces. It is clear that the maximum-weighted absolute error 
reduces as the order of filter and the number of bits, used for the 
representation of the coefficients increases. Note that Initial is the 
error of the filter that results from the initial design procedure that 
approximates the desired frequency response D(ej ), without any 
alphabet constraint. Most of the earlier algorithms that try to 
optimize MCM operations are heuristic, providing no indication 
how close the solutions are to the optimum in contrast to our 
approach. In case of filters 2, 4 and 7 we present the best possible 
solution (BP) that can be found from the branch and bound 
technique. We note that the difference between the error of the 
proposed algorithm and BP solution (reported by GAMS) is small.  
      In Fig. 3 the scaled magnitude response of a bandpass filter is 
presented to demonstrate the quality of the filter designed using 
our approach. We have noticed that by reducing the alphabet set to 
four, including for instance the alphabets {1, 3, 5, 9}, the error can 
be very small and as a result the frequency response, resulting 
from the new coefficient vector  is close to that of the desired 
frequency response (Fig. 3). A small alphabet set with less number 
of ones in its representation is suitable for the low-power 
implementation as noted earlier. The mixed integer package of 
CPLEX and GAMS [12] was used for the modeling and solving    
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Fig. 3: Log magnitude response of N=64 band-pass filter using S3 
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Table 2: Error in Objective function (OE) and Best Possible solution (BP) of example filters, using different alphabet sets 

    
of the above problem and none of the solutions required more than 
a few minutes of CPU time resulting in stable, linear phase filters. 

5. FIR FILTER IMPLEMENTATION 

We implemented transposed direct form FIR filters of order N=12 
in 0.25 m technology, using 17x17 CSHM architecture with 
different number of alphabets and CSAM [10]. The coefficients 
that were synthesized by the optimal algorithm were used in the 
implemented filters. Simulation results show that as we decrease 
the size of Aset, CSHM out-performs CSAM architecture with 
respect to power and performance, albeit with gradual filter quality 
degradation (Fig.4a). As we have shown, the modified coefficients 
are generated by maximum sharing of subexpressions by reducing 
the number of alphabets and as a result the overhead of muxes and 
precomputer is further reduced. In case of 2-alphabet CSHM, there 
is a 37% power and 11% performance improvement when 
compared to 8-alphabet CSHM and 11% increase of error.  
       We note that the alphabets in each case are selected according 
to the number of ones from the Gset. For better trade-off between 
filter quality and power dissipation and performance, 4-alphabets 
(1, 3, 5, 9) can be used. In this case results show a 13% power and 
7% performance improvement when compared to CSHM-8 and 
8% power and 31% delay improvement compared to CSAM with 
only 2% increase of chebychev error in filter frequency response. 
Fig. 4b shows the area  reduction of CSHM as  the  size  of  Aset 
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Fig. 4: Comparison of CSHM (with varying Aset size) and CSAM 

decreases and the corresponding power and delay improvement.

6. CONCLUSION 

A new approach to low-power filter design by constraining the 
synthesis of coefficients has been presented. By pre-specifying a 
few “good alphabets” we synthesize “modified coefficients” so 
that proper trade-off between computation/communication 
complexity and filter quality can be made. The number of 
alphabets representing/covering the coefficients can be reduced 
significantly and the coefficients are guaranteed to be near optimal 
satisfying the filter characteristics. We have implemented CSHM 
with reduced number of alphabets and 37% power reduction was 
shown over the CSHM that uses all the 8 alphabets and 55% over 
the CSAM based filter. Our approach offers flexibility in 
accommodating more implementation (or power) related 
constraints such as the number of ones in the coefficients. The idea 
presented in this paper can prove to be suitable for designing 
multiplierless DSP algorithms and implementing low power and 
high performance systems.    
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Filter Specification  Results                              S7                  S6                 S5                 S4                       S3                  S2                  S1Filter Type Pass Stop Order  bits  (x10-3)        Initial {S6,11} {S5,15} {S4,13} {S3,7} {S2,9} {S1,5} {1,3} 
1 Low 0.45 0.47 128 8 OE 28.37 62.73 69.95 70.72 70.05 66.78 71.77 71.25 

OE 2 Band 
0.35 
0.75 

0.30 
0.80 64 12 

BP 
23.34 

- 
25.91 
23.34 

25.37 
23.34 

25.28 
23.34 

25.73 
23.36 

25.51 
23.38 

27.73 
23.63 

39.85 
36.35 

3 Low 0.40 0.50 128 12 OE 1.18 3.75 4.45 4.51 10.04 9.97 10.49 12.71 
OE 4 Low 0.25 0.30 84 12 BP 

8.6 
- 

9.49 
8.65 

9.6 
8.66 

9.63 
8.67 

12.11 
10.91 

13.06 
10.84 

18.75 
16.55 

38.33 
25.13 

5 Low 0.40 0.48 64 12 OE 21.38 23.75 23.82 24.37 24.51 23.94 24.64 24.69 
6 Low 0.50 0.65 32 12 OE 6.64 11.83 8.57 12.89 10.91 13.23 17.95 21.6 

OE 7 Low 0.50 0.58 44 12 BP 
14.68 

- 
16.38 
14.9 

16.26 
14.72 

15.98 
14.7 

17.7 
16.07 

17.8 
16.06 

37.18 
33.68 

36.93 
33.7 

8 Band 0.33 
0.66 

0.25 
0.75 32 12 OE 50.03 52.23 52.26 51.54 52.28 54.41 53.45 55.4 

9 Low 0.50 0.58 12 16 OE 109.7 110.54 110.59 110.8 111.34 111.8 112.3 122.26 
10 Low 0.25 0.30 64 16 OE 21.18 21.69 21.24 23.78 24.03 22.75 25.62 32.38 
11 Low 0.45 0.47 128 16 OE 14.86 15.12 15.1 15.31 16.71 15.52 22.29 65.73 
12 Low 0.40 0.42 256 16 OE 0.77 1.01 16.1 7.38 7.36 10.69 13.39 18.63 
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