
AN OPTIMAL ALGORITHM FOR LOW POWER MULTIPLIERLESS FIR
FILTER DESIGN USING CHEBYCHEV CRITERION

Georgios Karakonstantis and Kaushik Roy
School of Electrical and Computer Engineering, Purdue University

{gkarakon, kaushik}@ecn.purdue.edu

ABSTRACT

In this paper, we propose a novel finite impulse response (FIR)
filter design methodology that reduces the number of operations
with a motivation to reduce power consumption and enhance
performance. The novelty of our approach lies in the generation of
filter coefficients such that they conform to a given low-power
architecture, while meeting the given filter specifications. The
proposed algorithm is formulated as a mixed integer linear
programming problem that minimizes chebychev error and
synthesizes coefficients which consist of pre-specified alphabets.
The new modified coefficients can be used for low-power VLSI
implementation of vector scaling operations such as FIR filtering
using computation sharing multiplier (CSHM). Simulations in
0.25um technology show that CSHM FIR filter architecture can
result in 55% power and 34% speed improvement compared to
carry save multiplier (CSAM) based filters.

Index Terms— Multiplierless digital filter design, low power,
chebychev criterion, optimization methods

1. INTRODUCTION

With the continual need for improving the data rates at reduced
power dissipation, the need for improved complexity reduction
schemes for Digital Signal Processing (DSP) systems still persists
today. One of the most widely used operations performed in DSP
and most common in multiple constant multiplication (MCM)
problems, referred to the multiplication of a variable by a set of
constants is FIR filtering. Simple low-complexity implementations
of digital filters using signed powers-of-two (SPT) [1], canonical
signed digit (CSD) [2] and minimal signed digit (MSD) [3] number
representations have been reported by many researchers. The
optimization of MCM operation has often been accomplished by
using shift-and-add multiplication algorithms with common sub
expression elimination (CSE) [4]. Many approaches [5] start from
a given optimal filter solution and find different quantization
schemes that reduce the implementation cost in the vicinity of an
optimal solution. Such schemes applied in post-synthesis phase of
FIR filters, although simple, cannot guarantee an optimal solution
with the desired frequency response.

In this paper, we explore complexity reduction in FIR filters
from the point of view of removing computational redundancy in
the synthesis phase of multiplierless filters, rather than following
the traditional post-synthesis approach. Given a filter specification
and a “pre-specified set of alphabets” (the details of which will be
explained shortly) we synthesize “modified coefficients” so that
proper trade-off between computation/communication complexity
and filter quality can be made. Instead of trying to eliminate the

common sub-expressions in the coefficient vector, we propose an
algorithm that slightly modifies the coefficients and satisfies the
filter design constraints. The new coefficient vector reduces
redundant computation and is suitable for the implementation of
filters with CSHM architecture which increases computation re-
usability and power savings compared to other architectures [6].
 The rest of this paper is organized as follows. In section 2
vector scaling operation and a review of CSHM architecture is
presented. Section 3 presents optimal FIR filter design. Section 4
describes the proposed approach and compares the results of
different synthesized filters. In section 5 the implementation of
CSHM FIR filters using different alphabets and modified
coefficients is compared to CSAM based filters. Finally,
conclusions are drawn in section 6.

2. VECTOR SCALING AND CSHM ARCHITECTURE

The multiplication of vectors by scalars is referred as vector
scaling operation. For instance, multiplication of a coefficient
vector C= [c0, c1,…, cM-1] with a scalar x(n) is a vector scaling
operation which is commonly used in DSP tasks such as filtering
and matrix multiplication. In vector scaling operations, we can
decompose any scalar si to smaller bit sequences ak such that si can
be rebuilt from these sequences by few shifts and adds. A
decomposition of a simple vector scaling operation [c0, c1] x, is
shown in Table 1. If (0001)x, (0011)x, (0111)x, (1011)x are
available, the entire multiplication is reduced to a few add and
shift operations. We refer to these smaller bit sequences ak, as
alphabets. Also, an alphabet set is a set of alphabets that spans all
the coefficients in vector C. In the above example the alphabet set
is {1, 3, 7, 11}.
 CSHM architecture is based on the algorithm explained above.
CSHM is composed of a precomputer, select units and final adder
(SSA) as shown in Fig. 1. The precomputer computes the
multiplication of alphabets and input vector X in advance and store
them for re-use. When a scalar comes in, it is divided into smaller
bit sequences that have the same length as that of an alphabet. The
Shift unit, right shifts these sequences to determine the matching
alphabet and generates control signals which are the index signal
to the mux and the shift signal to the ISHIFT. A 2-to-1 mux takes
care of the zero (0000) coefficient value determined by a select
signal, sent by the Shift unit. The A:1 mux, where A defines the
number of alphabets used, selects one precomputed value based on
the index signal. The ISHIFT unit, correspondingly, left shifts the
selected value from the A:1 mux. Finally, the output values are
properly shifted and added to generate the final result.

Table 1: Vector scaling operation
Coefficients Decomposition

c0=01100111 (103) c0 x = 25 (0011) x + (0111) x
c1=10001011 (139) c1 x = 27 (0001) x + (1011) x This research was sponsored in part by Semiconductor

Research Corporation (1122.001).

II 491424407281/07/$20.00 ©2007 IEEE ICASSP 2007

minimize () max () () ()E W D G (OE.1)

 where : set of disjoint frequency bands in the range 0

s.t.
1

1
2

0

()()2cos(2 ()) ()
()

N

k

E
h k n k D

W
 (1)

1
1
2

0

()()2cos(2 ()) ()
()

N

k

E
h k n k D

W
 (2)

Fig. 1: Computation sharing multiplier implementation (A=4)

In order to cover all possible coefficients and to perform
general multiplication operation efficiently, 8 alphabets
{1,3,5,7,9,11,13,15} can be used [7]. It should be noted that the
number of alphabets directly translates to power dissipation of the
pre-computer unit, while the number of communication buses
(coming out of the precomputer) is also proportional to the number
of alphabets. However, for non-adaptive filters, the number of
coefficients can possibly be reduced to achieve lower routing
complexity and lower power dissipation and is the subject of
discussions in section 4.

3. FIR FILTER DESIGN

FIR filters have been traditionally designed using optimization
techniques with the objective of reducing the difference between
the desired frequency response and the computer generated filter.
Usually this difference is specified as a weighted function given by
E()=W()[H(ej)-D(ej)], where H(ej) denotes the frequency
response of the digital transfer function to be designed, D(ej) is
the desired frequency response and W() is a positive weighting
function [8]. A commonly used approximation measure is the
Chebychev or min-max criterion which is the objective function
(OE.1) of the optimal linear phase FIR filter design problem that
can be stated as: find a set of coefficients h(k) that minimizes the
maximum-weighted absolute error defined as:

The above formulation corresponds to design of even order (N)
linear phase filters. There are four different kinds of transfer
functions for linear phase filter design. The above formulation can
be extended easily to all four cases by substituting constraints 1
and 2 with the appropriate equations, presented in [9].

4. PROPOSED OPTIMAL ALGORITHM

4.1 Problem definition

As noted above, earlier approaches have tried to optimize MCM
operation starting from a given coefficient vector (post-synthesis
phase). Given a filter specification, our aim is to generate filter

coefficients in the synthesis phase that can be used for the
implementation of multiplierless filters, specifically CSHM filters
which have shown increased power and speed improvement than
earlier implementations. However, earlier approaches to CSHM
based filter [7] used pre-specified fixed coefficients and the
complete set of 8 alphabets for its implementation. The novelty of
our approach lies in the generation of coefficients such that they
conform to a given low-power architecture, while meeting the
given filter specifications by using the pre-specified “good
alphabets.” Hence, proper trade-off between computation/
communication complexity and filter quality can be made and
CHSM based filters can be implemented using fewer alphabets.
For instance in the example of section 2, if we select to use the
alphabet set {1, 3}, then the coefficient vector has to be slightly
modified to c0=01101000 (104), c1=01100110 (138). As a result
we need only two precomputer banks instead of four. This reduces
the power required to operate these units. Also, power dissipation
depends on the signal switching activity [10]. By selecting
alphabets that have fewer number of ones, such as {1, 3, 5} we
expect power consumption to be further reduced.
 Two types of filter coefficient synthesis methodologies are more
commonly used than others. They include i) optimal techniques,
such as those based on Mixed-Integer Linear Programming (MILP)
and ii) suboptimal techniques which include local search and
stochastic optimization. As an exhaustive search method, MILP
guarantees the optimal solution, but the computational time
increases with the number of filter taps. On the other hand, local
search methods can find a ‘good’ solution, in reasonable time, but
might be far from the optimal. Therefore, we formulate the
assignment of alphabets to coefficients as MILP which can be
solved by using branch and bound technique [11]. However, in
order to use branch and bound technique for the optimal solution,
we need to impose certain constraints on the MILP formulation.

 4.2 Algorithm Description and MILP Constraints

In this section, each step of the optimization algorithm and the
corresponding MILP constraints are described. The proposed idea
is illustrated in Fig. 2 and can be separated into two phases.
 In phase 1, the filter characteristics and the parameters of the
algorithm are given as inputs. These include the order N of the
filter, the passband and stopband frequencies, the desired
frequency response D(ej) and the number of bits L and W that
represent the coefficients and the alphabets respectively. Note that
we classify the alphabets into 4 groups (Gset in Fig. 2) based on
the following considerations: (a) number of ones in each alphabet
and (b) number of shifted values that each alphabet can produce.
The vector of the input alphabets, Aset is selected from the Gset
groups. Coefficients are represented in sign magnitude format.
 In phase 2, each coefficient is synthesized using the pre-
specified set of alphabets, Aset, conforming to the given filter
characteristics. This phase can be divided into five steps:
Step 1: A vector Vset containing the shifted values of input
alphabets Aset is generated. Consider for instance alphabets 1, 3, 5
and 7. The resulting Vset for these alphabets is shown in Fig. 2.
We note that by selecting alphabets that have less numbers of ones
(refer to Section 4.1), power consumption can be reduced.
Step 2: Each L-bit coefficient is represented by S= L/W sections.
Each section ni, i=0,..,S consists of a W-bit sub-expression which
represents an alphabet or one of its shifted values.
Step 3: Assignment of the alphabets or their shifted values from
Vset to each section ni of each coefficient. To represent this step, in

II 50

1 2() () ()E e e
1 2() () () ()D G e e

Fig. 2: Composition of each coefficient

the MILP formulation, we impose the following constraints:
 For each section i :

-1

0 0 ,
 1

N A

k a
k a

sel , i = 0,…, S (3)

-1

0 0
, , ()

N A

k a
i k k an sel Vset a , A: size of Vset (4)

where seli are binary (0-1) variables, and ni represent sections of
each coefficient. We impose constraint 4 in order to ensure that
only one shifted value of the alphabets is assigned to each section.
For instance, if we consider the 1st section (i=1) of the 1st
coefficient (k=0) and assume A=4, the constraint 4 will be:
sel0,0 + sel0,1 + sel0,2 + sel0,3 = 1. This expression together with
constraint 5 ensures that only one of the 0-1 variables is equal to 1
and hence, only one alphabet a is assigned to section i=1.
Step 4: Each section is multiplied by a factor 2i*W to determine the
significance of each section (location) and for shifting them
properly to compose each coefficient (Table 1). For instance if
L=12 bits are used for the representation of the coefficients and
each section is represented by W=4 bits then each coefficient
consists of S=3 sections. The least significant section, n0 is
multiplied by 1, the next section n1 is multiplied by 16 (shifted by
4) and the most significant n2 by 256 (shifted by 8). We note that
scaling the output preserves the filter characteristics, but results in
an overall magnitude gain equal to the scale factor [8].
Step 5: Finally the shifted sections from step 4 are added together
to represent the coefficients. The constraint that we have to impose
in MILP formulation to implement steps 4 and 5 is given as:
 For each coefficient k:

-1

0
,() (()) 2

S
i

i
i kh k sign h k n , k=0,…, N-1 (5)

where sign denotes the signs of the coefficients. Note that steps 4
and 5 combined with step 3 can be seen as an iterative procedure
where in each iteration only one alphabet is selected and assigned
to each section, the combination of which compose new
coefficients.
 Following earlier post-synthesis approaches, we can start from
a given optimal filter solution and apply the above procedure. In
this case the iteration stops when the difference between the
desired and the new composed coefficients is minimized. However
such an approach does not have much control over any changes in
filter specification due to the changes in filter coefficients.
4.3 Final MILP Problem Formulation
In this section, we present the overall optimization algorithm. As
we noted, the aim of our approach is to guarantee the optimality of
the filter response. Therefore, it is necessary to combine the
optimal initial filter design procedure (OE.1, constraints 1, 2) with
the alphabet restrictions (constraints 3-5) described in the previous

section. The problem now becomes a complex discrete
optimization problem and can be stated as follows:
Determine the set of coefficients h(k) that consist of specific sub-
expressions (or sections) by satisfying the alphabet constraints and
minimizing the maximum-weighted absolute error.
 In order to reduce the complexity of this nonlinear problem
and formulate it as MILP problem, we linearize the maximum
weighted absolute error which is the objective function given in
OE.1, by introducing two positive variables e1() and e2(). As a
result, the objective function 1 (OE.1) is substituted by constraints
6, 7 and the final formulation with the new objective function
(chebychev criterion) is given by:

minimize E() (OE.2)
 s.t. (6)

 (7)

combined with constraints 1 to 5 which have already been
discussed in previous sections.

4.4 Results

In this section we present results to demonstrate the power and
potential of the proposed approach. We have implemented linear
filters of even order, by using different alphabet sets and the errors
in the objective function (OE.2 - chebychev error) scaled by 103
are presented in Table 2. Also, different bit widths were used for
the representation of the synthesized coefficients.
 A closer observation of Table 2 reveals some interesting results.
First, as expected, with a larger alphabet set, the difference
between the initial frequency response and the acquired solution
reduces. It is clear that the maximum-weighted absolute error
reduces as the order of filter and the number of bits, used for the
representation of the coefficients increases. Note that Initial is the
error of the filter that results from the initial design procedure that
approximates the desired frequency response D(ej), without any
alphabet constraint. Most of the earlier algorithms that try to
optimize MCM operations are heuristic, providing no indication
how close the solutions are to the optimum in contrast to our
approach. In case of filters 2, 4 and 7 we present the best possible
solution (BP) that can be found from the branch and bound
technique. We note that the difference between the error of the
proposed algorithm and BP solution (reported by GAMS) is small.
 In Fig. 3 the scaled magnitude response of a bandpass filter is
presented to demonstrate the quality of the filter designed using
our approach. We have noticed that by reducing the alphabet set to
four, including for instance the alphabets {1, 3, 5, 9}, the error can
be very small and as a result the frequency response, resulting
from the new coefficient vector is close to that of the desired
frequency response (Fig. 3). A small alphabet set with less number
of ones in its representation is suitable for the low-power
implementation as noted earlier. The mixed integer package of
CPLEX and GAMS [12] was used for the modeling and solving

0.2 0.4 0.6 0.8

30

40

50

60

Normalized Frequency

M
ag

ni
tu

de
 (d

B
)

Initial
Set 3S3

0.2 0.4 0.6 0.8

30

40

50

60

Normalized Frequency

M
ag

ni
tu

de
 (d

B
)

Initial
Set 3S3

0.2 0.4 0.6 0.8

30

40

50

60

Normalized Frequency

M
ag

ni
tu

de
 (d

B
)

Initial
Set 3S3

Fig. 3: Log magnitude response of N=64 band-pass filter using S3

II 51

Table 2: Error in Objective function (OE) and Best Possible solution (BP) of example filters, using different alphabet sets

of the above problem and none of the solutions required more than
a few minutes of CPU time resulting in stable, linear phase filters.

5. FIR FILTER IMPLEMENTATION

We implemented transposed direct form FIR filters of order N=12
in 0.25 m technology, using 17x17 CSHM architecture with
different number of alphabets and CSAM [10]. The coefficients
that were synthesized by the optimal algorithm were used in the
implemented filters. Simulation results show that as we decrease
the size of Aset, CSHM out-performs CSAM architecture with
respect to power and performance, albeit with gradual filter quality
degradation (Fig.4a). As we have shown, the modified coefficients
are generated by maximum sharing of subexpressions by reducing
the number of alphabets and as a result the overhead of muxes and
precomputer is further reduced. In case of 2-alphabet CSHM, there
is a 37% power and 11% performance improvement when
compared to 8-alphabet CSHM and 11% increase of error.
 We note that the alphabets in each case are selected according
to the number of ones from the Gset. For better trade-off between
filter quality and power dissipation and performance, 4-alphabets
(1, 3, 5, 9) can be used. In this case results show a 13% power and
7% performance improvement when compared to CSHM-8 and
8% power and 31% delay improvement compared to CSAM with
only 2% increase of chebychev error in filter frequency response.
Fig. 4b shows the area reduction of CSHM as the size of Aset

(a)

49.2 51

71.48

44.07
31.86 110.8 109.7 109.7

111.8

122.26

14.9 15.73 16.34 16.86 22.9

0

15

30

45

60

75

90

CSHM 2 CSHM 4 CSHM 6 CSHM 8 CSAM

P
ow

er
 C

on
su

m
pt

io
n

100

104

108

112

116

120

124

E
rr

or

Power [mW]
Error
Delay [ns]

(b)

1.71.6 1.711.931.81

0

15

30

45

60

75

90

CSHM 2 CSHM 4 CSHM 6 CSHM 8 CSAM

P
ow

er
 C

on
su

m
pt

io
n

0

0.5

1

1.5

2

2.5

A
re

a

Area [mm2]
Delay [ns]
Power [mW]

Fig. 4: Comparison of CSHM (with varying Aset size) and CSAM

decreases and the corresponding power and delay improvement.

6. CONCLUSION

A new approach to low-power filter design by constraining the
synthesis of coefficients has been presented. By pre-specifying a
few “good alphabets” we synthesize “modified coefficients” so
that proper trade-off between computation/communication
complexity and filter quality can be made. The number of
alphabets representing/covering the coefficients can be reduced
significantly and the coefficients are guaranteed to be near optimal
satisfying the filter characteristics. We have implemented CSHM
with reduced number of alphabets and 37% power reduction was
shown over the CSHM that uses all the 8 alphabets and 55% over
the CSAM based filter. Our approach offers flexibility in
accommodating more implementation (or power) related
constraints such as the number of ones in the coefficients. The idea
presented in this paper can prove to be suitable for designing
multiplierless DSP algorithms and implementing low power and
high performance systems.

7. REFERENCES
[1] H. Samueli, “An Improved Search Algorithm for the Design of
Multiplierless FIR Filters with Powers-of-Two Coefficients”, IEEE TCAS,
pp 1044-1047, July 1989.
[2] R. Hartley, “Optimization of canonic signed digit multipliers for filter
design”, IEEE Int. Symp. Circuits and Systems, pp. 1992–1995, June 1991.
[3] I. Park, et al., “Digital filter synthesis based on minimal signed digit
representation”, IEEE DAC, pp. 468-473, 2001.
[4] M.Potkonjak, et al., “Multiple constant multiplications: Efficient and
versatile framework and algorithms for exploring common subexpression
elimination”, IEEE TCAD , 15(2):151-165, Feb 1996.
[5] M.D. Macleod, et al., “Multiplierless FIR filter dsign algorithms”, IEEE
Signal Processing Letters, vol 12, issue3, pp. 186-189, March 2005.
[6] J. Park, et al., “High performance FIR Filter Design Based on Sharing
Multiplication”, IEEE TVLSI, vol. 11, no. 2, April 2003.
[7] K. Muhammad, Algorithmic and Architectural Techniques for Low
Power Digital Signal Processing, PhD thesis, Purdue University, 1999.
[8] J. G. Proakis, D. G. Manolakis, “Digital Signal Processing: Principles,
Algorithms and Applications”, McMillan Company, New York, 1992.
[9] M. K Dusan, “Design of Optimal Finite Wordlength FIR Digital Filters
Using Integer Programming Techniques”, IEEE TASSP, vol. ASSP-28, no.
3, June 1980.
[10] N.H.E. Weste, D. Harris, “Principles of CMOS VLSI Design: A
Systems Perspective”, 3rd edition, Addison Wesley, 2004.
[11]W.L.Winston, “ Introduction to Mathematical Programming
Applications and Algorithms”, 2nd edition, ITP, 1995.
[12] Gams - A User’s Guide, GAMS Development Corporation, 2006.

Filter Specification Results S7 S6 S5 S4 S3 S2 S1Filter Type Pass Stop Order bits (x10-3) Initial {S6,11} {S5,15} {S4,13} {S3,7} {S2,9} {S1,5} {1,3}
1 Low 0.45 0.47 128 8 OE 28.37 62.73 69.95 70.72 70.05 66.78 71.77 71.25

OE 2 Band
0.35
0.75

0.30
0.80 64 12

BP
23.34

-
25.91
23.34

25.37
23.34

25.28
23.34

25.73
23.36

25.51
23.38

27.73
23.63

39.85
36.35

3 Low 0.40 0.50 128 12 OE 1.18 3.75 4.45 4.51 10.04 9.97 10.49 12.71
OE 4 Low 0.25 0.30 84 12 BP

8.6
-

9.49
8.65

9.6
8.66

9.63
8.67

12.11
10.91

13.06
10.84

18.75
16.55

38.33
25.13

5 Low 0.40 0.48 64 12 OE 21.38 23.75 23.82 24.37 24.51 23.94 24.64 24.69
6 Low 0.50 0.65 32 12 OE 6.64 11.83 8.57 12.89 10.91 13.23 17.95 21.6

OE 7 Low 0.50 0.58 44 12 BP
14.68

-
16.38
14.9

16.26
14.72

15.98
14.7

17.7
16.07

17.8
16.06

37.18
33.68

36.93
33.7

8 Band 0.33
0.66

0.25
0.75 32 12 OE 50.03 52.23 52.26 51.54 52.28 54.41 53.45 55.4

9 Low 0.50 0.58 12 16 OE 109.7 110.54 110.59 110.8 111.34 111.8 112.3 122.26
10 Low 0.25 0.30 64 16 OE 21.18 21.69 21.24 23.78 24.03 22.75 25.62 32.38
11 Low 0.45 0.47 128 16 OE 14.86 15.12 15.1 15.31 16.71 15.52 22.29 65.73
12 Low 0.40 0.42 256 16 OE 0.77 1.01 16.1 7.38 7.36 10.69 13.39 18.63

II 52

