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ABSTRACT
Data compression techniques have extensive applications

in power-constrained digital communication systems, such as

in the rapidly-developing domain of wireless sensor network

applications. This paper explores energy consumption trade-

offs associated with data compression, particularly in the con-

text of lossless compression for acoustic signals. Such sig-

nal processing is relevant in a variety of sensor network ap-

plications, including surveillance and monitoring. Applying

data compression in a sensor node generally reduces the en-

ergy consumption of the transceiver at the expense of addi-

tional energy expended in the embedded processor due to the

computational cost of compression. This paper introduces a

methodology for comparing data compression algorithms in

sensor networks based on the figure of merit D/E, where D
is the amount of data (before compression) that can be trans-

mitted under a given energy budget E for computation and

communication. We develop experiments to evaluate, using

this figure of merit, different variants of linear predictive cod-

ing. We also demonstrate how different models of computa-

tion applied to the embedded software design lead to different

degrees of processing efficiency, and thereby have significant

effect on the targeted figure of merit.

Index Terms— DSP software, lossless data compression,

linear predictive coding, low power design, wireless sensor

networks.

1. INTRODUCTION

Acoustic sensors or seismic recorders acquire signals from

acoustic sources and transmit those signals to end users or

servers. Signal processing techniques are extensively used

in such sensor node applications and also in telecommunica-

tions equipment such as gateway station controllers for wire-

less communications. These applications, and the subsys-

tems to which they interface, involve energy consumption

through computation, transmission, and reception. The major

source of energy consumption is in the transceiver portions

and some form of energy savings can be attained by keeping

the transceiver in a standby mode and switching to the opera-

tional mode only when there is data for transmission. We can

reduce the time the transceiver is in the operational mode if

the volume of data to be transmitted is reduced by compres-

sion. Reduction in data size for this purpose can give consid-

erable savings in power, which is required in energy-limited

applications.

In this paper, we model lossless data compression algo-

rithms and compare their energy efficiency trade-offs between

computation and communication. Our comparison is in terms

of a metric, defined in Section 3, that is geared towards con-

sidering the integrated effect of data compression on compu-

tation and communication. In implementation approach, we

apply dataflow models to represent candidate compression al-

gorithms, and map them into efficient embedded software re-

alizations. This provides a formal link between algorithm rep-

resentation and hardware/software optimization that is useful

in maximizing the overall impact of compression.

We evaluate different variants of linear predictive coding
(LPC) using our proposed figure of merit, and different forms
of dataflow modeling — based on the degree of dynamics in

the LPC variants — for implementing the embedded software

realizations. Specifically, we experiment with a static ver-

sion that of LPC that is implemented based on synchronous
dataflow (SDF) modeling [1]; a dynamic version, which is
more flexible in its operation, and is implemented based on

parameterized synchronous dataflow (PSDF) modeling [2];

and a dynamic cyclo-static version that is implemented based

on parameterized cyclo-static dataflow (PCSDF) modeling [2,
3]. We refer to these variants respectively as static-version

LPC (SVLPC), dynamic-version LPC (DVLPC), and dynamic
cyclo-static LPC (DCLPC).

2. BACKGROUND AND RELATEDWORK

Data compression shrinks raw data to smaller volumes, which

is desirable for data communication since less data requires

less time and less energy for transmission and reception. Pre-

vious research on data compression for communication mainly
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focuses on how to decrease the communication delay or the

required transmission bandwidth. Hans and Schafer [4] present

an overview of lossless data compression in the context of

audio data. With the emergence of many severely energy-

constrained application domains, such as various forms of

sensor networks, the topic of energy efficiency is becoming

increasingly important. Zhang and Li [5] discuss the imple-

mentation of compression algorithms for seismic data. This

work estimates the energy reduction after compression that

is due to data reduction, and considers the energy costs of

communication alone or in isolation from the costs of com-

putation.

Our paper differs from this related work in its empha-

sis on design and implementation considerations that relate

compression algorithms with the underlying embedded soft-

ware. Also, in our experiments, we focus on compression

of acoustic signals, although our overall methodology can be

applied equally to other types of sensor signals. In our pre-

vious research, we have developed preliminary experimental

results [6] on energy consumption trade-offs between compu-

tation and communication based on the SVLPC and DVLPC

compressions methods mentioned above. In this paper, we

introduce a figure of merit that captures this trade-off to eval-

uate the impact of compression in an integrated manner, and

we consider a third variant of LPC implementation, DCLPC,

that is geared towards adaptive operation and more stream-

lined software implementation. DCLPC demonstrates how

reformulating a compression algorithm (in this case DVLPC)

in terms of a more suitable model of computation (in this case

PCSDF) can result in a more efficient software realization.

Using our figure of merit for energy-aware compression and

the three selected variants of LPC, we compare the perfor-

mance of these different realizations of lossless compression,

and demonstrate our methodology for integration and imple-

mentation of compression techniques into energy-constrained

sensor node platforms.

The DCLPC implementation that is examined in this pa-

per was presented initially in [3], where it has been used as

an example for demonstrating novel techniques for modeling

and scheduling dataflow graphs. The topic of this paper and

treatment of DCLPC is different in that we focus here on inte-

grated consideration of compression performance and energy

efficiency.

3. FIGURE OF MERIT

The data compression ratio, expressed as the percentage of

compressed data size with respect to the original data size, is

a direct metric for quantifying the reduction in data quantity

achieved by a compression algorithm. In the application of

energy-limited systems, energy consumption is a metric that

needs to be considered explicitly. Various metrics are used to

consider energy efficiency. For example, Ye uses energy con-

sumption to evaluate the energy efficiency of different com-

munication protocols for sensor networks [7]. The metric of

network lifetime is also used (e.g., see Bhardwaj [8]), where

energy efficiency is represented by the total operational time

of a network. Ammer and Rabaey [9] propose a metric of

energy-per-useful-bit (EPUB) to evaluate and compare sen-

sor network physical layers.

In this paper, we introduce a new performance metric that

is geared towards capturing the energy efficiency of data com-

pression algorithms together with their realizations on spe-

cific sensor node platforms. We represent this figure of merit

as a ratio D/E, which can be evaluated in terms of a given
segment of data that is to be compressed and transmitted.

Here,D represents size of the data segment (before compres-
sion), and E is the total energy consumption for both compu-
tation and communication — that is, for the compression of

the data, and for communication of the compressed data. Us-

ing this metric, we can explore in detail trade-offs involving

overall energy efficiency and compression depth when con-

sidering different compression algorithms, together with their

DSP software realizations, and their targeted embedded pro-

cessors.

4. SVLPC, DVLPC, AND DCLPC

In the static version of LPC that we consider, the parame-

ters of LPC are constant and known beforehand. Details of

the static parameter configuration and SDF modeling used

for implementing SVLPC is explained in [6]. In SVLPC, the

number of data values (tokens) produced and consumed by
each software module (dataflow graph actor) is constant and
known at compile time. This admits a representation in terms

of SDF modeling principles [1].

SVLPC has the advantage of being simpler and more pre-

dictable due to the underlying SDF structure of the compu-

tations. However, the compression ratio of LPC can be im-

proved by dynamically changing its parameters, such as the

frame size and model order. For this purpose, we employ a

dynamic version of LPC, called DVLPC, where the frame size

and model order are determined during run time, as explained

in [6]. Our implementation of DVLPC is based on a PSDF

representation [2], where the computations are organized in

the form of a dynamically reconfigurable SDF graph.

The third form of LPC implementation in our experiments,

called DCLPC, can be viewed as a reformulation of the DVLPC-

based design in terms of parameterized cyclo-static dataflow

(PCSDF) modeling [2]. PCSDF provides for the efficient

quasi-static scheduling of PSDF modeling, but also allows for

finer grained modeling of dataflow properties, which can lead

to more thorough software optimization [3]. Details of the

operation and dataflow properties of the DCLPC version are

explained in [3].
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5. EXPERIMENTAL APPROACH

We have developed embedded software implementations based

on the three versions of compression described in the previous

section. The computational blocks (dataflow actors) in these

realizations are implemented in the C language, and are de-

signed in a modular way so that they can be used conveniently

in other applications, such as other compression schemes that

we will consider in our future work. The overall C imple-

mentation for each application version is derived from the

dataflow graph in conjunction with the actor code using meth-

ods described in [3].

Our experiments are carried out for two different target

processors from Texas Instruments — the TI64xx (using the

Code Composer Studio simulation tool) and TI5509 (using

the DSK hardware emulator).

6. COMPARISON AMONG SVLPC, DVLPC AND
DCLPC

Figure 1 shows a comparison of the energy consumption for

the three LPC versions with segment sizes ranging from 50

to 500 samples. In this experiment, the target processor is TI

64XX, with the CPU frequency set at 25 MHz. The energy

consumed is given by the product of the power consumed and

the time taken to convert the segment size to bits. The time

taken is determined by simulation, and the power consump-

tion used in our calculation is obtained from the processor

data sheet.

Fig. 1. Energy consumption comparison.

Figure 2 shows a comparison in terms of the figure of

meritD/E, which was introduced in Section 3. The compar-
ison here is between the static and dynamic versions, and is

based on the number of CPU clock cycles, power consump-

tion, and number of bits after compression. In this experi-

ment, we used the Texas Instruments C5509A DSK hardware

emulation board.

Fig. 2. Comparison of D/E: SVLPC vs. DVLPC.

The results quantify how the additional computational cost

of the more intensive DVLPC compression approach is more

than compensated by the decreased energy consumption in

the transceiver due to reduced transmission volume. TheD/E
metric also gives a means for evaluating progressively more

intensive compression schedules, and determining the point

for a particular platform at which the benefits of increased

compression achieves saturation or inversion in terms of en-

ergy efficiency.

Recall that the DCLPC is an improved version of DVLPC

that is reformulated in terms a dataflow format (PCSDF) that

provides the same compression behavior but also provides for

more thorough software optimization. This results, for ex-

ample, in more efficient memory usage: the amount of data

memory required for the DVLPC implementation is signif-

icantly more than for the DCLPC implementation (133,367

bytes vs. 123,332 bytes). If the internal memory is not large

to provide for this amount of data storage (along with all

other required application functionality) a DVLPC-based im-

plementation will generally have to employ external mem-

ory more extensively compared to a DCLPC implementation.

This can result in a large performance and energy consump-

tion penalty since off-chip memory requires significantly more

energy and time to access.

Table 1 shows the number of clock cycles and figure of

merit D/E from DVLPC and DCLPC if compression is run
using external memory. These results are obtained using en-

ergy consumption monitoring features of the TI C55X power

optimization DSK, which monitors DSP current consump-

tion on the processor core, I/O, and board power rails. The

results demonstrate significant energy efficiency of DCLPC

compared to DVLPC under external memory operation.

7. ADAPTIVE DVLPC

We have integrated SVLPC and DVLPC into a fourth ver-

sion, which can be viewed as an adaptive form of DVLPC.

We thus refer to this version as adaptive DVLPC. Adaptive
DVLPC employs a feedback approach in which the previ-
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Table 1. CPU cycles and D/E from different models

Size DV(clock) PC(clock) DV(D/E) PC(D/E)

50 12,678,804 11,514,988 32.5972 35.8738

100 28,151,006 26,047,554 29.2992 31.6470

150 43,879,900 40,361,380 28.2039 30.6444

200 62,799,868 60,085,727 26.2760 27.4545

Table 2. Comparison of adaptive DVLPC vs. DVLPC.

Size D(clock) A(clock) D(D/E) A(D/E)

100 22,999,430 8,556,558 119.1 129.1

200 426,023,069 15,210,157 63.5 177.1

300 941,318,880 17,392,059 50.9 184.5

400 2,065,488,259 155,516,714 32.5 146.8

500 2,637,102,688 198,078,833 32.6 158.2

ously achieved compression depth δi (the ratio of compressed
data size to original data size) is used to control the model

order M of the core LPC compression subsystem. Adaptive

DVLPC has an additional computational block that compares

δi to a pre-determined threshold τ , and provides feedback that
is used to guide selection of the model order that will be used

for subsequent compression. The model order used in the

previous frame can be retained and used for the next frame if

deltai > tau. Otherwise, the adaptive operation of the sys-
tem will produce a new model orderM , which will be passed
as a parameter value update to the core compression subsys-

tem. In our present approach, the threshold tau is determined
experimentally based on the impact on overall D/E.

Table 2 shows a comparison of the CPU cycles and figure

of merit D/E between adaptive DVLPC and DVLPC with

the Texas Instruments TI64xx as the target processor. We see

that the adaptive approach has reduced the CPU clock cycles

considerably and in turn obtained more energy efficiency, as

indicated byD/E. Using adaptive DVLPC, we can “tighten”
or “loosen” the compression configuration based on the en-

ergy budget.

8. CONCLUSIONS

Data compression is an effective way to improve energy effi-

ciency in wireless sensor networks. However, to fully under-

stand and optimize the impact of compression in an energy-

limited scenario, it is necessary to consider the associated

trade-off between computation and communication. In this

paper, we have developed a methodology for design and im-

plementation of compression software that is geared toward

tuning operation of a compression system with respect to this

computation/communication trade-off. The methodology in-

volves evaluating system performance with respect to a fig-

ure of merit that is based on the amount of data that can

be transmitted for a given energy budget. The methodology

also involves careful dataflow modeling of candidate com-

pression algorithms so that the embedded software can be

streamlined, thereby enabling use of more intensive compres-

sion for a given energy budget and a given processing plat-

form. We have presented experimental results that consider a

variety of compression techniques and two different embed-

ded processors. The results demonstrate the effectiveness of

our methodology in quantitatively exploring the design space

associated with integration of compression techniques into

energy-limited sensor node platforms.
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