
A HIGH-PERFORMANCE HARDWIRED CABAC DECODER 

Jian-Wen Chen            Youn-Long Lin 

Department of Computer Science  
National Tsing Hua University 

 Hsin-Chu, Taiwan 300 
d948317@oz.nthu.edu.tw,    ylin@cs.nthu.edu.tw

ABSTRACT 

We present a high-performance hardwired context-based 
adaptive binary arithmetic decoder (CABAD) for 
H.264/AVC. Based on an analysis of decoding time for 
different types of syntax elements, we propose three parallel 
processing techniques. Our decoder takes 309 clock cycles 
to decode a typical I-type macroblock. It needs to run at 
only 45MHz for 1080HD application. Therefore, our 
architecture is suitable for low power mobile applications. 

Index Terms— H.264/AVC, CABAC Decoder

1. INTRODUCTION 

H.264/AVC is the latest video coding standard jointly 
developed by the ITU-T Video Coding Experts Group and 
ISO/IEC Moving Picture Experts Group [1]. It has several 
new features including multiple reference frame and 
variable block size motion estimation, integer DCT, in-loop 
deblocking filter, and context-based adaptive binary 
arithmetic coding (CABAC) [2][3][4]. In comparison with 
MPEG-4, it can achieve up to 50% bit-rate saving under the 
same video quality constraint. 
  CABAC is one of two entropy coding methods in 
H.264/AVC. Compared with the other method named 
Context-based adaptive variable length coding (CAVLC), it 
saves more than 7% of bit-rate at the expense of higher 
computation complexity. Profiling results show that it 
consumes about 10% of total decoding time. Therefore, 
accelerating the CABAC decoding with hardwired 
implementation is desirable for high-performance or low-
power applications.  

Although there are several works proposing fast multiple-
bin-per-cycle arithmetic encoding/decoding architectures, 
none of them takes system design issues into consideration. 
Due to data and control dependency, it is non-trivial to keep 
the arithmetic decoding engine highly utilized. 

We first analyze the numbers of cycles needed for our 
previous decoder [6] to decode each type of syntax elements 
in a macroblock. We use a test sequence “Mobile” in CIF 
resolution under QP = 28. The analysis results are shown in

Table 1. On the average, it takes 782 clock cycles to decode 
an I-MB, which has about 652 bins. The purpose of this 
work is to substantially reduce the number of clock cycles. 

Table 1. Decoding cycles of each type of syntax elements  
Types of 
Syntax 
element 

Coded_blo
ck_flag Coefficient Sig. & 

Last_sig. Others Total

# Bin 22 319 259 52 652
# Cycle 127 320 260 75 782I
B./C. 0.17 0.99 0.99 0.69 0.83
# Bin 10 44 76 35 165

# Cycle 63 44 76 106 289P
B./C. 0.16 1 1 0.33 0.57
# Bin 5 31 16 26 78 

# Cycle 29 31 16 101 177B
B./C. 0.17 1 1 0.16 0.44

We propose a parallel decoding method to reduce clock 
cycles for decoding Coded_block_flag syntax elements 
(SEs), a two-bin-per-cycle method for decoding Coefficient 
SEs, and a context table re-arrange method for decoding 
Sig.&Last_sig._pair SEs. The resultant decoder saves the 
cycle counts per MB by more than 30% (from 782 to 527). 

The rest of this paper is organized as following. In 
Section 2, we present our CABAC decoder architecture. In 
Section 3, we propose three methods for reducing clock 
cycles. Our experimental result is shown in Section 4. 
Finally, we draw conclusions in Section 5. 

2. PROPOSED ARCHITECTURE 

2.1.  H.264/AVC entropy decoder architecture 

Figure 1 depicts the block diagram of our H.264/AVC 
entropy decoder architecture, which is part of a complete 
hardwired decoder. Our proposed architecture consists of a 
Variable Length Coding (VLC) parameter decoder, a 
CABAC decoder, an AHB master wrapper, and a 64-word 
FIFO. At the beginning, the entropy decoder reads bit 
stream data from SDRAM and writes to the FIFO through 
the AHB bus. The VLC decoder decodes slice-level 
information into the parameter memory and parses data to 
the CABAC decoder. The CABAC decoder processes 

II  371424407281/07/$20.00 ©2007 IEEE ICASSP 2007



stream data according to the coding information in the 
parameter memory. It outputs the decoded results to the 
Mb_info memory and the Coefficient memory for further 
processing such as IQ/IDCT, compensation, and filtering. 

Stream 
data 

(SDRAM) 

AHB 
Master 

Wrapper 

FIFO 
64 words 

VLC CABAC 

Parameter  
memory 

Mb_info
memory 

Coefficient
memory AG 

Figure 1. H.264/AVC entropy decoder architecture 

2.2. CABAC decoder architecture 

Figure 2 depicts our proposed CABAC decoder architecture. 
At the beginning of slice-level decoding, the decoder gets 
parameters from the parameter memory and uses the Build 
table module to build a new context table by reading in the 
initial ROM. For the macroblock layer, the Se select module
determines the type of the syntax element to be decoded and 
receives neighboring data for context modeling from the 
Get neighbor module. Then, the Context model module
calculates context as the index to the context table. The Se 
decode module determines how to decode each bin of the 
syntax element. Finally, the Arithmetic engine (AE) module
performs arithmetic decoding and consumes the bit stream.  

VLC Buffer 

handler 
AE

Se 

decode 

Se 

select 

Get 

neighbor

Context model 

Coeff 
Mem. 

Mb_Info.
Mem.

Context 
Memory 

Build  
table 

CABAC controller 

Initial 
table 

Parameter 
 Mem 

CABAC decoder 

Slice layer Macroblock layer 

Figure 2. Proposed CABAC decoder architecture 

We implement the initial table using a 1484x16-bit ROM 
and the context table a 399x7-bit two-port SRAM. 
Additionally, we use two single-port Coefficient memories 
(533x9-bit) and one two-port Mb_info memory [6]. The 
Coefficient memory is read by the IDCT module in a ping-

pong fashion. The Mb_info memory could be read by intra 
prediction, motion compensation, and CABAC. 

Figure 3 shows the timing diagram and control signals. In 
the slice layer, the CABAC decoder reads parameters or 
builds context table according to start_rd_pa and init_slice
signals from the top-level main controller. In the 
macroblock layer, it starts to decode one macroblock 
according to the init_cabac signal. When it finishes 
decoding a macroblock, it will notify the main controller by 
asserting end_slice and end_cabac signals. 

Read parameter Build context table Decode one macrblock 

Initialize codlOffset Write data to mb_info_mem. 

Write data to coeff_mem. 

Read mb_info_mem.

start_rd_pa

end_rd_pa

init_slice

end_build_table 

init_cabac 
end_slice 
end_cabac

Clock cycle
10 12 413 415 0

end_initialize 

Slice layer Macroblock layer

end_rw_mem

Figure 3. Timing diagram of the CABAC decoder 

3. PERFORMANCE ENHANCEMENT METHODS 

We propose three methods to reduce clock cycles for 
decoding syntax elements of types Coded_block_flag, 
Coefficient, and Sig. & Last_sig. pair, respectively. 

3.1. The parallel decoding method 

According to analysis in Table 1, our original CABAC 
decoder consumes around 16% of total cycles to decode 
Coded_block_flag syntax elements for which each bin 
needs three additional cycles to get neighboring data and 
one clock cycle to generate context. We propose 
parallelizing the tasks of decoding coefficients and getting 
neighboring data.  

Figure 4 shows the flow chart of our parallel method. 
First, the decoder gets the neighboring data and generates 
the context of a Coded_block_flag SE. Second, it decodes 
the Coded_block_flag SE and calculates the address of the 
neighboring data for the next Coded_block_flag SE. Then, 
it decodes a Sig. & Last_sig pair SE and gets the left 
neighboring data at the same time. Third, the CABAC 
decoder decodes a Coefficient SE and gets the top 
neighboring data simultaneously. Finally, it goes to decode 
the next Coded_block_flag SE. 
  By using the parallel decoding method, we save around 
8% of total cycles. 

II  38



Calculate the context of 
Coded_block_flag 

Decode Coded_block_flag 

Decode Sig_flag 
Decode Last_sig_flag 

(Sig. & Last_Sig. pair) 

Decode coefficient 

Calculate addr. of left 
neighboring data 

Calculate addr. of top 
neighboring data 

Get left neighboring data 

Get top neighboring data 

Next syntax element

Figure 4. The flow chart of the parallel decoding method 

3.2. The two-bin-per-cycle decoding method 

The CABAC decoder uses 41% of total cycles to decode 
Coefficient SEs. Therefore, we proposed a two-bin-per-
cycle method as depicted in Figure 5 to decode two bins in 
one clock cycle.  

ModeAE 

Bit 
stream 

Bit
stream 

Shift
bits  

Shift
bits  

Bin  
value  

Bin  
value  

Context memory

Arithmetic 
decoder

Renormalization 

Arithmetic
decoder 

Renormalization 

Forwarding 

Se 

Decode

Buffer 

handler 

Figure 5. Block diagram of the two-bin decoding method 

The arithmetic engine combines two arithmetic decoder 
similar to He’s architecture [5]. It can decode two regular 
bins, two bypass bins, or one regular and one bypass bin in 
a single cycle. 

In addition, we employ a forwarding logic to avoid 
reading the un-updated context data when the decoder 
encounters consecutive bins with the same context. The 
Buffer handler module provides bit stream for 
renormalization. It stalls the arithmetic decoding process 
when the stream buffer is empty. The Se decode module

determines modes and reads bin value to generate syntax 
element. 
  Taking into account control overhead and stall due to 
buffer emptiness, the proposed two-bin-per-cycle method 
contributes 13% reduction of total cycles. 

3.3. The context table rearrangement method 

According to analysis shown in Table 1, there are on the 
average 6 Significant_flags and 4 Last_significant_flags in a 
4x4 block. Their decoding accounts for 31.7% of the total 
cycles. Figure 6 shows the decoding order of 
Significant_flag and Last_significant_flag. We propose 
dividing the context table into two tables as shown in Figure 
7. 

0 1 1 1 10

0 0 0 1

Sig. & Last_sig. pair 

Significant_flag     :

Last_significant_flag :

Figure 6. The decoding order of  Significant_flag and 
Last_significant_flag. 

215 122 x 7 bits

277 x 7 bits

60 

276
275

214

166
165

0

105
Significant_flag

Coeff_level_abs

Context

Significant_flag

Context 

Last_significant_flag

0

61 

121 
Last_significant_flag

Figure 7. The organization of proposed context tables 

  Our decoder can concurrently read two context data of Sig. 
& Last_sig. pair from the new divided context tables. 
Therefore, the arithmetic engine could decode a Sig. & 
Last_sig pair in one cycle. In comparison with He’s work 
[5], which groups 15 context data of Sig. and Last_sig. into 
a very wide entry, our method has better coding efficiency. 

  By the rearrangement of context table, our CABAC 
decoder saves 12% of total cycles after taking into 
consideration stall due to buffer emptiness. 

II  39



4. EXPERIMENTAL RESULTS 

We have implemented the proposed architecture in 
Verilog RTL and synthesized it targeted towards a TSMC 
0.13 m CMOS cell library as shown in Table 2. At the 
slow-slow corner, the arithmetic engine can run at 188 MHz. 
Due to the combination of arithmetic engine and forwarding 
circuit, the whole CABAC decoder can be clocked at 137 
MHz. We have also integrated the design into a pure 
hardwired H.264/AVC main profile decoder and 
successfully demonstrated an FPGA prototype. 

Table 2. The synthesis result 

Targeted module Gate counts Frequency
Complete CABAC Decoder 40,762 137 MHz

Arithmetic engine 11,475 188 MHz

Table 3 shows the average clock cycles for different 
sequences. We use five video sequences with different 
characteristics under QP = 28 to verify our proposed 
architecture. For the MB with most bins (I-MB in Mobile), 
our decoder achieves throughput of about 1.24 bins per 
cycle, which is about 50% better than the original 0.83 bin 
per cycle in Table 1. 

Table 3. Performance of the proposed architecture 

Type of MB Mobil
e

Forem
an 

Tempe
te News Carph

one Avg

bin 652 176 450 202 186 333
cycle 527 195 402 216 206 309I

MB 
b./c. 1.24 0.9 1.12 0.94 0.9 1.08
bin 165 55 143 28 58 90 

cycle 225 104 181 93 112 143P
MB 

b./c. 0.73 0.53 0.8 0.3 0.52 0.63
bin 78 30 78 22 49 52 

cycle 149 108 165 102 126 130B
MB 

b./c. 0.52 0.28 0.47 0.22 0.39 0.4
bin 298 87 224 84 98 158

cycle 301 136 249 137 148 194Avg 
b./c. 0.99 0.64 0.9 0.61 0.66 0.8

Based on the above results, we estimate the needed 
speed of our circuit for different resolutions in Table 4. For 
HDTV (1920x1088, denoted 1080HD) application, it needs 
only 45 MHz. 

Table 4. The working frequency for different resolutions 

Resolution CIF D1 720p 
HD

1080 
HD 

Working 
frequency 
 at 30 fps 

3 MHz 8 MHz 20 MHz 45 MHz

In Table 5, we compare our design with He’s work [5]. 
Our architecture takes only 40% of cycle counts. Running at 
top speed, our design can deliver 1.35X higher throughput. 

Table 5. In comparison with other’s work 

 He [5] Our design 
Average 

cycles/MB
500 194 

Frequency  150 MHz  
(0.18 m) 

137 MHz  
(0.13 m) 

Throughput  314,572 MB/s 740,489 MB/s 

5. CONCLUSION 

We have proposed a high-performance CABAC 
decoder architecture. We employ three novel techniques to 
speed-up the decoding process of three most frequent types 
of syntax elements. Experimental results over a wide range 
of video sequences and MB types show that our decoder can 
on the average process an MB in fewer than 200 clock 
cycles. This is more than 2X better than state-of-the-art.  

In the future, we would like to further improve its 
performance and integrate it into a super HDTV system. 

6. REFERENCES 

[1] Draft ITU-T Recommendation and Final Draft International 
Standard of Joint Video Specification (ITU-T Rec. 
H.264|ISO/IEC 14496-10 AVC) 

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based 
adaptive binary arithmetic coding in the H.264/AVC video 
compression standard,” IEEE Transactions on Circuits and 
Systems for Video Technology, pp: 620-636, July 2003. 

[3] M. Mrak, D. Marpe, and T. Wiegand, A context modeling 
algorithm and its application in video compression,” IEEE 
2003 International Conference on Image Processing, pp. III 
- 845-8, Sept. 2003. 

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, 
Overview of the H.264/AVC video coding standard,” 

IEEE Transactions on Circuits and Systems for Video 
Technology, pp. 560-576, July 2003.

[5] W. Yu, and Y. He, “A high performance CABAC decoding 
architecture,” IEEE Transactions on Consumer Electronics, 
pp. 1352-1359, Nov. 2003.

[6] J.W. Chen, C.R. Chang, and Y.L. Lin, “A hardware 
accelerator for context-based adaptive binary arithmetic 
decoding in H.264/AVC,” IEEE International Symposium 
on Circuits and Systems, pp. 4525-4528, May 2005.

[7] C.H. Kim, and I-C. Park, “High Speed Decoding of 
Context-based Adaptive Binary Arithmetic Codes Using 
Most Probable Symbol Prediction” IEEE International 
Symposium on Circuits and Systems, pp. 1707-1710, May 
2006.

II  40


