
A DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION ALGORITHM FOR
PROCESS NETWORKS

Gregory E. Allen, Paul E. Zucknick, and Brian L. Evans

Applied Research Laboratories, and Dept. of Electrical and Computer Engineering
The University of Texas at Austin

P.O. Box 8029, Austin, TX 78713-8029
{gallen,zucknick}@arlut.utexas.edu, bevans@ece.utexas.edu

ABSTRACT
In the Process Network (PN) model, multiple concurrent pro-

cesses communicate over unidirectional FIFO queues. PN is

useful for modeling signal processing systems of streaming

data, and naturally captures parallelism in these systems. PN

provides formal execution properties to alleviate the difficul-

ties of threaded and distributed programming, and naturally

maps onto parallel and distributed targets. For a large class

of PN, clever run-time scheduling can permit execution in

bounded memory. In general, PN termination and bound-

edness cannot be statically determined, so correct bounded

scheduling of PN requires run-time deadlock detection. We

present the first algorithm that correctly performs dynamic

deadlock detection and resolution for bounded scheduling of

PN. The proposed algorithm is a modification of a distributed

deadlock detection algorithm by Mitchell and Merritt.

Index Terms— Kahn process networks, deadlock resolu-

tion, dynamic scheduling, distributed computing, signal pro-

cessing

1. INTRODUCTION

The Process Network (PN) model was introduced by Kahn

in 1974 [1]. It is a dataflow model in which concurrent pro-

cesses communicate (only) over FIFO queue channels. Pro-

cess Networks naturally model functional parallelism, and

can model data parallelism. They are well-suited for mod-

eling signal processing systems, including parallel and dis-

tributed systems. It has widely been observed that concurrent

and distributed programming is difficult [2]. The formal un-

derpinnings of PN are a potential aid to easing this difficulty.

A Process Network is represented as a directed graph,

where each node represents a process and each arc (or edge)

represents a queue channel, directed from producer to con-

sumer. This model is natural for describing the streams of

data samples in a signal processing system. Typically, a sys-

tem block diagram can naturally map onto a Process Network.

Supported by the Independent Research and Development program at

Applied Research Laboratories: The University of Texas at Austin.

Kahn’s model, in general, requires infinite memory for ex-

ecution. As work toward bounded-memory scheduling of PN

has progressed, several implementations have been published

[3][4][5][6]. One of the earliest PN models reported to be de-

ployed in the field was our real-time 3-D sonar beamformer

on a 12-processor Sun workstation [7].

A required feature for correct bounded-memory schedul-

ing of PN is dynamic deadlock detection. We present a sim-

ple, distributed, scalable algorithm that can detect deadlock

in a Process Network, locate the culpable process and queue,

and resolve the deadlock if it is possible.

2. THE PROCESS NETWORKMODEL

2.1. Kahn Process Networks

Kahn proposed the Process Network model [1], in which mul-

tiple concurrent processes are connected via unidirectional

FIFO queues to form a network. Each process may have any

number of incoming or outgoing queues, and may communi-

cate to other processes only via these queues. Kahn showed

that a Process Network program is determinate – the results
produced on all queues are the same for every possible exe-

cution order, including concurrent execution.

PN uses simple, local rules for scheduling, and is there-

fore distributable and scalable. A node suspends execution

when it attempts to read from an empty queue. When writing

to a queue, a node can never be suspended. Hence, queues

can become infinitely long. A node cannot check for the pres-

ence of data on a queue, nor can it read from more than one

queue at a time.

Infinitely large queues are undesirable, as execution in

bounded memory is necessary for any practical implemen-

tation. Termination and total stream lengths are properties of

the program and do not depend on the execution order of the

nodes in the network. However, the number of unconsumed

samples that can accumulate on queues does depend on the

execution order [8].

II ­ 331­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

2.2. Parks’s Bounded Scheduling

Parks proposed [8] a scheduling policy to yield a bounded

execution of a PN if it is possible. Because it is undecid-

able whether a PN can be scheduled in bounded memory, the

scheduler must work dynamically as the program executes.

Parks’ policy suspends a node for writing to a full queue. If

a queue is chosen to be too small, artificial deadlocks (pro-
cesses permanently blocked on a full queue) may occur that

were not present in the original (unbounded) PN. Parks pro-

posed a global dynamic deadlock detector that increases the

size of the smallest blocked full queue.

Although counterexamples to Parks’s bounded scheduling

policy eventually surfaced, his work was a major step toward

making the model more than an academic curiosity.

2.3. Geilen and Basten

Geilen and Basten further examined [9] bounded scheduling

of PN, and introduced an additional requirement: that the PN

be effective. They call a PN effective only if every token that
is produced on a queue is eventually consumed. Bounded

scheduling of a non-effective PN may result in an incomplete

execution – that is, execution may terminate earlier than it

would have in the unbounded model. Unfortunately, it is un-

decidable in general whether a PN is effective.

Geilen and Basten also showed [9] that a dynamic dead-

lock detector should detect local deadlocks, not only global
ones as proposed by Parks.

If a process is blocked reading from an empty queue (or

writing to a full queue), it is dependent on a unique other pro-

cess – that at the other end of the queue. The only other reso-

lution is to increase the size of a blocked full queue. Because

any blocked process depends on some unique other process,

this gives rise to chains of dependencies. If a dependency

chain is cyclic it indicates a local deadlock, and no further

progress can be made without external resolution.

By detecting and resolving local deadlocks, we can exe-

cute bounded, effective PNs to completion in bounded mem-

ory. It is impossible to schedule all PNs in bounded memory.

However, this is a very large set of PNs, and arguably the most

interesting set for practical applications.

3. DYNAMIC DEADLOCK DETECTION

Proper bounded-memory scheduling of PN requires dynamic

detection of local deadlocks. If the detected deadlock is ar-

tificial, then it must be resolved in order to preserve the de-

terminacy of the PN. We present an algorithm that performs

distributed dynamic deadlock detection and resolution (D4R).

Olson and Evans presented [6] an application of an algo-

rithm by Mitchell and Merritt [10] to deadlock detection for

PN. Although originally designed for distributed database ap-

plications, this Mitchell and Merritt algorithm appropriately

detects deadlocks for PN. The Mitchell and Merritt algorithm

count

public private

count

nodeID

q_size q_size

nodeID

Fig. 1. D4R algorithm state data at each node.

is a single resource algorithm – at any given time, a process
is waiting on at most a single resource. This is also the model

specified for PN – a node may be blocked on at most a single

other process. The application presented by Olson and Evans

could detect whether a deadlock was present, but it did not

specifically locate or resolve the deadlock.

We present an algorithm based on a different Mitchell and

Merritt algorithm from the same paper [10]. This second al-

gorithm uses process priorities, and identifies the lowest pri-

ority process in the deadlock cycle so that it can be resolved.

We assign the process priorities such that the algorithm deter-

mines whether a deadlock is real or artificial, and identifies

the node that is blocked writing to the queue which must be

lengthened in order to resolve the deadlock.

Using the same nodes and edges as in a PN graph, we

can construct a wait-for graph for the D4R algorithm. Here,
an edge indicates that a process is blocked and waiting on a

single other process. The direction of the wait-for edges are

from the waiting process to the process being waited on. Note

that the edges in the wait-for graph coincide with the edges in

the original PN graph. For read-blocked nodes, the direction

of the edge is opposite that in the original PN graph.

For our version of the algorithm each node contains algo-

rithmic state data as shown in Figure 1, consisting of public

and private sets of a triple: a non-decreasing counter count,
a unique node identifier nodeID, and a queue size variable
q size (which serves the function of Mitchell and Merritt’s
priority variable). Each process is initialized with public and

private sets equal. The public set changes as the algorithm

progresses, but the private set remains unique to that node.

Note that count and nodeID are combined into a single

variable in the Mitchell and Merritt paper. Our use is con-

sistent with their suggestion of “keeping the low-order bits of

the label constant and unique while increasing the high-order

bits when desired [10].” We use the notation count:nodeID to
show these variables as concatenated into one.

The node state data and wait-for edges define the state of

the D4R algorithm at any time. Figure 2 shows the possible

state transitions for this algorithm in the order that they occur:

Block, Transmit, Detect, and Activate. State data which is
unchanging or unused in a transition has been left blank.

The Block state transition occurs when a PN node blocks
on a queue, creating an edge in the wait-for graph. The block-

ing node’s state data is fully initialized, and its count variables

are incremented to be greater than that of both nodes. Our

q size variable is also initialized during this state transition.

II ­ 34

u

q

v

q q

v

a a

w w

outdegree=0

B
L

O
C

K

w=max(u,v)+1

u

a

s

v

b

p s

v

bb

v

(u:a<v:b) or (u:a=v:b, q>r)T
R

A
N

S
M

I
T

u

a

q q q

a

D
E

T
E

C
T

q

u

a

q

u

q

a

u

q r

a

r

p=minnn(r,s)

STATE BEFORE STATE AFTER

A
C

T
IV

A
T

E

Fig. 2. State transitions for the D4R algorithm.

This is what permits our D4R algorithm to determine whether

a deadlock is artificial, and localize the smallest full blocked

queue. The variable q size is set as follows: when a process
blocks on a read, set q size = -1; when a process blocks on a
write, set q size to the size of the blocking (full) queue.

The Transmit state transition occurs when a waiting pro-
cess detects a change in the public state of the node upon

which it is waiting, and certain criteria are met: if the other

node’s public count:nodeID is larger than its own, or if they
are equal and q size is smaller in a non-negative sense. That
is, any positive q size is “smaller” than a negative q size. (This
can be easily implemented as an unsigned comparison of 2’s

complement numbers.) If the criteria are met and the state

transition occurs, then the waiting node replaces its public

count:nodeID with the one it just read, and sets its public

q size to the non-negative minimum of the two nodes. In im-
plementation, each time a node’s public state changes, it will

notify any dependent nodes. The effect is that larger counts
and “smaller” q sizes migrate along the edges of the wait-for
graph, in the opposite direction.

The Detect state transition occurs when a waiting process
sees that its entire public set matches that of the node upon

which it is waiting, and its public and private q sizes also
match. It then knows that it is not only a part of a deadlock

cycle, but that it also has the “smallest” q size in the non-
negative sense. Only one process will detect the deadlock,

and the value of q size tells the type of deadlock: if q size is
negative, this is a real deadlock; otherwise this is an artificial

deadlock, and the smallest, blocked, full queue has been iden-

tified. This is precisely the queue that must be lengthened for

correct bounded scheduling of PN [9].

The Activate state transition may occur after Detect. If

the deadlock was real, the program has terminated. If it was

artificial, the culpable queue has been lengthened so that the

PN program may continue. Of course, Activate will also oc-
cur after Block repeatedly as the PN proceeds normally in the
absence of any deadlock.

4. A PROOF OF CORRECTNESS

We have intentionally made portions of our algorithm equiva-

lent to the Mitchell and Merritt priority-based algorithm. We

therefore include the following Theorem from their paper [10]

without proof.

Theorem 1 If a cycle of N nodes forms and persists long
enough, the lowest priority (smallest in a non-negative sense)
process in the cycle will execute the Detect step after at least
N-1 and at most 2N-2 consecutive Transmit steps.

Mitchell and Merritt assign a fixed priority to each node,

whereas we set q size at each Block step. We therefore need
to show that we have not violated the rules of their algorithm.

Lemma 2 If a node has outdegree=0 in its wait-for graph, it
can change the value of its private q size. That is, a node’s
private q size need only be fixed when it has non-zero outde-
gree in the wait-for graph.

Proof The private q size of a node is unused unless the node
has a non-zero outdegree. No other node can access its pri-

vate q size at any time. The deadlock detection algorithm will
therefore proceed unaffected.

Theorem 3 A node can change its q size during its Block
state transition (both public and private).

Proof Just prior to a Block state transition, a node must have
outdegree=0 because this is a single-resource algorithm, and

a process can only block on a single queue. By Lemma 2, the

node can set its private q size at this time. During the Block
state transition, the node also copies its private q size to its
public q size.

We have shown that we can correctly schedule bounded,

effective Process Networks using the D4R algorithm as de-

scribed in Section 3. Our algorithm simply modifies that of

Mitchell and Merritt [10] to set the q size based on the size of
the queue that we are about to block on, and whether we are

blocking on a read or a write.

As a further discussion topic, a count that continuously
increases is not implementable for a program that never ter-

minates. We wish to examine the possibility of periodically

resetting the count variables to prevent “rolling over”.

Proposition 4 If a node has outdegree=0 and indegree=0 in
the wait-for graph, it can change its public and private count
variables. The nodeID variable is still unique and unchanged.

II ­ 35

Proof The count variables are only used when the node has
non-zero outdegree or indegree. When both are zero, it is as if

the node has never been in a wait-for graph. Adding an arc to

the wait-for graph requires a Block step, which will increment

the count variables as necessary for the algorithm.

While it is easy to determine that outdegree=0, it is not

obvious how to inexpensively and easily determine that inde-

gree=0. For now, the count variables simply must be large
enough to prevent rollover in any reasonable amount of time.

5. IMPLEMENTATION

In addition to proving correctness, we have created an im-

plementation of the presented D4R algorithm. This imple-

mentation is integrated into an update of our Computational

Process Networks (CPN) framework [7]. CPN is an extended

model of PN, as well as a high-performance framework im-

plementation using POSIX threads. The previously published

version of this framework was limited to running on a single

symmetric multiprocessing workstation. However, work has

been underway to extend this framework to permit execution

of CPN programs over a distributed network of workstations.

Local queues are implemented with shared memory, and re-

mote queues will primarily be implemented over TCP sock-

ets. As with the original implementation, the goals have been

high performance and very low overhead, with the ability to

handle high-throughput streams of data for signal processing.

It is important to note that performance is not a goal for

the implementation of the D4R algorithm. Artificial dead-

lock in a program is an undesired state, and considered an

exception to normal operation. In a real deadlock, that por-

tion of the program has terminated. In any case where there

is a performance tradeoff between the D4R algorithm and

normal queue operation, we choose that which is faster for

normal queue operation. This makes the framework faster

and lower overhead for programs where the minimum queue

lengths have already been determined.

We have demonstrated that the presented D4R algorithm

can dynamically detect and resolve artificial deadlocks. It

also detects real deadlocks, which indicate that some local

portion of the program will make no further progress. Our

CPN framework therefore correctly schedules bounded, ef-

fective Process Networks in bounded memory. Because both

this bounded scheduling and the presented D4R algorithm are

based completely on local data between connected nodes (and

do not require any global synchronization) distributed imple-

mentations are straightforward and scalable.

Our CPN framework implementation, as well as examples

of the presented D4R algorithm, are available at:

http://www.ece.utexas.edu/˜allen/CPN/

6. CONCLUSION

Process Networks are useful for modeling signal processing

systems of streaming data, and naturally captures parallelism

in these systems. Bounded, effective Process Networks can be

executed in bounded memory, but require dynamic deadlock

detection and resolution. We present the first algorithm to not

only detect deadlock, but to determine whether it is real or

artificial, and to resolve it. This distributed algorithm permits

correct scheduling of bounded PN.

7. REFERENCES

[1] G. Kahn, “The semantics of a simple language for par-

allel programming,” Information Processing, pp. 471–
475, Aug. 1974.

[2] Edward A. Lee, “The problem with threads,” Tech. Rep.

UCB/EECS-2006-1, EECS Department, University of

California, Berkeley, Jan. 10 2006.

[3] T. M. Parks and D. Roberts, “Distributed process net-

works in java,” in Proc. Int. Workshop on Java for Paral-
lel and Distributed Computing, Nice, France, Apr. 2003.

[4] J. Vayssiere, D. Webb, and A. Wendelborn, “Distributed

process networks,” Tech. Rep. TR 99-03, Dept. of CS,

University of Adelaide, Australia, Oct. 1999.

[5] A. Amar, P. Boulet, J. Dekeyser, and F. Theeuwen, “Dis-

tributed process networks using half FIFO queues in

CORBA,” Tech. Rep. RR-4765, INRIA, Mar. 2003.

[6] A. G. Olson and B. L. Evans, “Deadlock detection for

distributed process networks,” in Proc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Proc., Philadelphia,
PA, Mar. 2005, pp. 73–76.

[7] G. E. Allen and B. L. Evans, “Real-Time sonar beam-

forming on workstations using process networks and

POSIX threads,” IEEE Trans. on Signal Processing, pp.
921–926, Mar. 2000.

[8] T. M. Parks, Bounded Scheduling of Process Networks,
Ph.D. thesis, EECS Department, University of Califor-

nia, Berkeley, CA 94720-1770, Dec. 1995, Technical

Report UCB/ERL-95-105.

[9] M. Geilen and T. Basten, “Requirements on the exe-

cution of Kahn process networks,” in Proc. European
Symposium on Programming, 2003, pp. 319–334.

[10] D. P. Mitchell and M. J. Merritt, “A distributed algo-

rithm for deadlock detection and resolution,” in Proc.
ACM Symposium on Principles of Distributed Comput-
ing, 1984, pp. 282–284.

II ­ 36

