
ALGORITHM TRANSFORMATION TO IMPROVE DATA LOCALITY FOR MULTIMEDIA

SOC

Anne Pratoomtong, Yu Hen Hu

University of Wisconsin-Madison, Madison, WI 53706

ABSTRACT

This paper is based on our previous work in [1]. In this

paper we propose a more systematic approach to improve

data locality of multimedia algorithm that contain nested

loop while still preserve the nested loop program semantic

by algorithm transformation. We introduce procedure to

evaluate the reuse vector of the data access. The reuse

vectors represent the input dependencies of the program in

the form of index vector which reveal the information of

which loop carrying reuse and thus are used as a guide to

select the loops subject to transformation. We use full

search block matching motion estimation (FBME) algorithm

as a case study because this algorithm has 6 level nested

loop and thus is a good showcase of our method.

Index Terms— Algorithm transformation, Full-search

block matching motion estimation, scheduling vector, reuse

vector, unimodular transformation

1. INTRODUCTION

The increasing demand in portable electronic especially in

the area of real time multimedia drives the system designer

to reduce the overall system power consumption, size and

increase system functionality by combining the functionality

into Systems-On-chip (SoC). Since they combine many

functionality on chip under area and power constraints,

there are very limited chip area left for on chip memory

system. In fact, majority of multimedia SoC available on

market today have less than 64 KB of on chip memory.

 Motion estimation algorithm is one of the core

algorithms in video coding and it is consider being one of

the most data intensive algorithms in multimedia

application. Full search block matching motion estimation

(FBME) algorithm produce high accuracy motion vector.

However, the accuracy come with the price of high

computation and data transfer overhead which will

emphasized the memory I/O bottleneck problem in SoC.

Fortunately, the data access pattern of the algorithm is

highly regular and deterministic which provide the

opportunity for data locality optimize and enhance memory

performance.

2. REUSE VECTOR SPACE

The computation of a nested loop with finite bounds of

indices can be represented in an iteration index space. This

representation is commonly used in parallel compilers and

has also been adopted in designing systolic arrays [2]. In

this representation, each integer coordinate corresponds to a

particular set of loop indices and therefore represents a

particular iteration. A regular iterative nested loop whose

loop bounds are not functions of data variables then can be

represented as a polytope in the iteration space.

Let us denote an index vector i = [i1, i2, …, iK]T where ik

is the loop index of the kth loop counting from the innermost

loop. We denote its bounds as Lk ik Uk, 1 k K. In the

FBMA algorithm, we have

vhmniji

We can represent the relative data access time,)(iT of the

computation in each iteration in the index space as a

function of loop bound as follows.

K

j

jj

j

q

qqj

K

vLc

vand

LUv

vvvvwhere

civiT

1

1

1

1

21

)(

1

)1(

][

)(

For the FBMA algorithm in figure 1 we have

)22()12(

)12()12()12(1

0000

1111

222

222222

ppNppNpNc

NpNpNpNNNv

ppL

NNppNNU

h

vh

Note that v is the nested loop sequential scheduling vector

which assign a specific execution order of each index point

in the nested loop, mapping each index point in the index

space into a positive integer, namely, Iiv)(.

II 291424407281/07/$20.00 ©2007 IEEE ICASSP 2007

Figure1. Six-level nested Do-loop FBME algorithm

From [3], let
fciHif)(be an indexing function of an

array A, two iterations, 1i and 2i , reference to the same data

in array)(ifA when ciHciH 21
, that is, when

0)(21 rHiiH . Therefore, the self-temporal reuse

vector space of a reference)]([ifA , RST, equal to null space

of H, null(H), or reuse vector space. According to [4], let n

be dimension of null space of H, there is exactly n vectors in

basis set of null(H) but there are an infinite number of such

sets that qualify as a basis. Therefore, multimedia

application involve accessing a two dimensional data in a

K-level nested loop where K is greater than three will have

a infinite set of reuse vector space since the dimension of

null(H) will be K-2 which is greater than one. Therefore,

definition one list criteria of selecting basis vector of

null(H),
ie .

 Definition 1: In order to find a candidate basis vector

of null(H),
ie , that represent the reuse direction, it is

necessary that
ie satisfy the following conditions.

1. 0ieH

2.
ie is a vector with length equals to K.

3. Every element in
ie has zero or integer value.

4. Let
ije represent element in j-th row of vector

ie ,

1<j<K.

jjijjijj LUeiei 0)max()min(.

 Although there is infinite number of
ie that satisfies the

first condition in definition 1, the solution space is limited

by condition 2-4. The second condition states that the

length of vector equals to the number of level of nested

loop.
ie represents the difference between two iteration so

each element of
ie equals to the difference of two indexes

which has integer value. Third condition implies this. The

forth conditions represent the bound of each element in
ie .

Since the value of each element in
ie equals to the

difference between two bounded indexes, it is also bounded.

The lower bound equals to minimum distance between the

two indexes which occurs when two indexes are the same

and the upper bound equals to the maximum distance

between the two indexes which occurs when one index is at

the upper loop bound and the other index is at lower loop

bound.

 Follow the following steps to find reuse vector
ie .

Step 1: Define E as a matrix consist of (K-Hm) vectors with

length equals to K where K equals to number of nested loop

and Hm equals to number of row of matrix H. Set diagonal

elements of E to one and elements above diagonal to zero.

Elements below diagonal are unknown.

Step 2: Find the unknown element below diagonal using

condition one in definition two. Set unknowns to zero

whenever possible. And if decision of which unknown to be

set to zero need to be made, set the one located in the higher

row to zero.

Step 3: After all the elements in E matrix are found,

multiply the column which has non-integer element with

constant to make them become integer. This is to ensure that

condition 3 in definition one is met.

Step 4: Check each element of
ie and make sure that they

are bounded using condition four in definition two. Only

ie that satisfy condition five is valid.

 FBME algorithm is shown in figure 1. The data input

come from two arrays which stored pixel value of two video

frame, current frame (x) and reference frame (y). The

indexing function of array x ,)(ifX
 and indexing function

of array y ,)(ifY
 can be written in the format describe in

[9] as follows.

0

01010

00101

00010

00001

)(

)(

c

vhmniji

N

N
H

N

N
HWhere

ciHif

ciHif

T

Y

X

YY

xX

We use the four steps describe above to derive the reuse

vector,
ie of reference and current frame as shown in figure

2.

3. ACCESS TEMPORAL LOCALITY PERIOD(ATLP)

ATLP represent the time duration between two iterations

that use the same data and it can be represented as a dot

product of scheduling vector and reuse vector.

II 30

1000

0100

010

001

0010

0001

,

00

00

10

01

00

00

,,,,,:4

1000

0100

010

001

0010

0001

,

0010

0001

1000

0100

000

000

:3

1
000

0
1

00

1010

0101

0010

0001

,

00
1

0

000
1

1000

0100

0010

0001

:2&1

432121

N

N
EE

eeeeEeeEStep

N

N
E

N

N

EStep

N

N

E

N

N

EStep

YX

YYYYYXXX

YX

YX

Figure2. Reuse vector of current and reference frame

access in FBME algorithm

 Since there are two and four basis vectors in the current

frame and reference frame access reuse vector space

respectively, there are two and four ATLPs of current and

reference frame access respectively. The ATLPs of current

frame (x) and reference frame (y) access of the program in

figure 1 can be derive as dot product of nested loop

sequential scheduling vector and basis vector of current

frame and reference frame access reuse vector space as

follows.

1212

12

12

1

12

322

44

322

33

2

22

2

11

2

22

2

11

pNNpNevATLP

NpNevATLP

NpNevATLP

NevATLP

pNevATLP

NevATLP

hYY

YY

YY

YY

XX

XX

 Current frame pixels are reused every time the search

area changes, therefore there are two ATPLs for the current

frame pixel. Accesses to reference frame pixels are more

complicated since the boundary of the search area overlaps

among many different iterations and as a result there are

four ATLPs for the reference frame.

4. ALGORITHM TRANSFORMATION

The pixel in the current frame is used without overlapping.

Therefore, as long as the cache is big enough to store one

current block, the temporal locality of the current block is

fully exploited. On the other hand, it is difficult to fully

MAD

x
y

j

n

l

y

k

x MAD

 (a) (b)

Figure3. (a) Index space of [n,j] loop of FBME algorithm

for N = p = 4. (b) Transformed index space.

exploit the temporal locality of the pixel in a search frame

since the pixel is overlapped when used in each search

block. Therefore, our goal is to improve the temporal

locality of the pixel in a search frame by reducing the

ATLPY. We will reduce the ATLPY1 which is the smallest

one. ATLP Y2 can also be reduced in a similar manner as

reducing ATLPY1. We will not reduced ATLP Y3 and ATLP

Y4 because they are fairly large since they involve the two

most outer loops carrying reuse and therefore is not cost

effective to reduce since it will create a lot of intermediate

storage.

 In ATLP Y1, loop n and j carrying reuse. Therefore, to

reduce the complexity of the algorithm transformation

procedure, we first consider only the two loops, n and j

which represent one dimension motion estimation. The data

locality behavior of the one and two dimension motion

estimation is similar and thus the result of the algorithm

transformation of the one dimension motion estimation can

be extended to the algorithm transformation of the two

dimension motion estimation. Figure 3a shows the index

space of loop n and j with block size (N) equals to search

range (p) equals to four along with the hyper plan of nested

loop sequential scheduling vector. The indexes along [n j]

= [0 1] direction execute in consecutive iteration. To

preserve the nested loop program semantic, we need to find

a unimodular transformation that change the reference

frame access reuse vector from [1 -1] to [0 -1] or [0 1] .

This will guarantee that the indexes that use the same

reference pixel, which is the node along direction [1 -1] ,

are executed in consecutive iteration with nested loop

sequential scheduling vector. The unimodular matrix U =

10

11 change the reference frame access reuse vector from

[1 -1] to [0 -1] . The unimodular transform index [n j] to

index [k l] where k = n+j and l = j. Figure3b shows the

new index space results from unimodular transformation

along with the same hyperplan shows in figure3a. Figure4

shows only the four

II 31

(a)

(b)

Figure4. (a) O1 FBME algorithm (b) O2 FBME algorithm

most inner loop of the transformed FBME algorithm. The

other part of the transformed algorithm is the same as the

original algorithm shows in figure1 and thus is omitted due

to limited space. In figure4a, loop k and l is created by

applying unimodular transformation to loop n and j in

figure1 and results in reducing ATLPY1 to one. After

transforming the algorithm, each pixel within the one

dimension search area is acquired only once. We call this

new algorithm level 1 optimization algorithm (O1). The O1

algorithm can achieve 100% data reuse only within one

search strip (n loop). However, the data access redundancy

between two adjacent search strips (m loop) still exists. In

order to achieve 100% data reuse within the whole search

area, the m and i loop need to be transformed in the same

manner as n and j loop. The unimodular matrix that use to

transformed index n and j is used to transform the index i

and m result in loop r and s shown in figure4b. The

transformed algorithm in figure4b achieves 100% data

reused within the search area (O2 algorithm). That is each

pixel within the search area is acquired only once.

5. PERFORMANCE

Equation 1 shows the redundancy access factor, Ra[5] of a

no optimization (O0), O1, O2 algorithm and equation two

shows ratio of number of reference frame pixel acquired

when perform FBME on one block in FBME optimized

algorithm (L1, L2) and origin algorithm (L0). It can be

conclude from equation one that both O1 and O2 algorithm

has smaller Ra than the original algorithm which means that

the algorithm transformation result in reducing the reference

frame redundancy data access. In fact O2 achieve the Ra of

one which means that there is no reference frame

redundancy data access when performing FBME on one

block. In equation 2, the percentage of number of reference

pixel acquired in O1 and O2 algorithm with respect to

number of reference frame pixel acquired in the original

algorithm decrease substantially especially for larger block.

Consider when block size equal to 16 or 32; O1 and O2

algorithm acquires almost 95% and 100% less data than the

original algorithm respectively.

1
)2(

)2(
)2(

2

)12(

)2(

)12)(2(
)1(

)2(

)12(
)0(

2

2

2

2

22

pN

pN
ORa

pN

pN

pN

ppNN
ORa

pN

pN
ORa

 (1)

2

22

2

22

)12(

2

1)12(

1)2(

0

2

)12(

2

1)12(

1)12)(2(

0

1

pN

pN

NNpN

NNpN

L

L

pN

pN

NNpN

NNppNN

L

L

hv

hv

hv

hv

 (2)

6. CONCLUSION

In this paper, we are able to increase temporal locality of the

reference frame data access by reducing the ATLP induced

by the two and the four most inner loops of FBME

algorithm to one. Usually when ATLP is large, there is a

high possibility that the data get replaced before it is used

again and thus induce redundancy bandwidth to reload the

data. Reducing ATLP to one guarantee that the data will

remains on-chip when it is use again since ATLP equals one

means that the data is acquire in consecutive iteration. As a

result, it eliminate the redundancy access induce in those

loop subject to transformation, thereby reduce memory

bandwidth utilization. This also reduces power

consumption, mainly due to a reduction of the on chip bus

usage since data is still available in the pipeline. By

applying unimodular transformation to the loop index

subject to ATLP reduction, the program schematic does not

change. Our method does not induce a complicated index

transformation or increase the depth of loop nest as other

techniques that involve loop folding to reduce nested loop

levels [5] or loop tiling [3].

7. REFERENCES

[1] S. Pratoomtong, Y. H. Hu, “On-Chip Cache Algorithm Design

for Multimedia SOC,” IEEE int. Conf. Acoustics, Speech, and

Signal Processing, pp. 337-340, Mar. 2005.

[2] S.Y.Kung, VLSI Array Processors, Prentice Hall, 1988.

[3] Michael E. Wolf, Monica S. Lam, “A Data Locality

Optimizing Algorithm,” ACM SIGPLAN, ACM Press, pp. 442-

459, Jun. 1991.

[4] John S. Bay, Fundamentals of linear state space systems,

McGraw-Hill, 1998.

[5] J.-C. Tuan, T.-S Chang, C.-W. Jen, “On the Data Reuse and

Memory Bandwidth Analysis for Full-Search Block-Matching

VLSI Architecture,” IEEE Trans. Circuits and Systems for Video

Technology, pp. 61–72, Jan. 2002.

II 32

