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ABSTRACT 
 
FPGA implementations of block floating point (BFP), streaming, 
256-point and 1024-point fast Fourier transform (FFT) circuits are 
described as examples of a new architectural approach that 
provides better performance, flexibility, and functionality than 
commercially available pipelined FFTs.  It is based on a matrix 
formulation of the discreet Fourier transform (DFT) that converts 
the direct transform into structured sets of arithmetically simple 
4-point transforms that are computed on a systolic array.  This 
circuit architecture permits transform lengths that are not a power-
of-two, can do 2-D as well as 1-D transforms, is scalable, has low 
computational latency and utilizes BFP and floating point (FP) 
features to provide high dynamic range.  Circuit comparisons are 
made with a commercially available pipelined FFT. 
 

Index Terms— Discrete Fourier transforms, High-speed 
electronics, Field programmable gate arrays, Systolic arrays 
 

1. INTRODUCTION 
 
The DFT appears prominently throughout a large number of signal 
processing, communications, radar, acoustics, and electromagnetic 
applications [1]. Consequently, there is a considerable literature 
related to techniques for rapid computation of the DFT and these 
have been effectively exploited in new digital signal processing 
programmable chips such as the Texas Instruments TMS320 series.  
However, for high throughput applications it is still difficult to find 
parallel circuit implementations that combine functionality, 
flexibility and speed.    

At the same time proposed and future systems will need 
considerably more implementation options for computing a DFT.  
For example, the recently announced Chinese  DMB-T (Digital 
Media Broadcasting Terrestrial) transmission standard is based 
orthogonal frequency division multiplexing and uses a number of 
sub-carriers that is not a power of two [2].  The custom FFT circuit 
that was developed provided better overall system performance 
even though it was slower and less efficient in terms of memory 
usage. Also future FFT implementations will need to offer 
scalability (orthogonal frequency division multiple access), high 
dynamic range (spectrum analysis, radar), and 2-D processing 
capabilities (image processing).  The “base-4” design proposed 
here addresses these needs. 

This paper is organized as follows: Section 2 describes related 
work, Section 3 summarizes a new matrix based DFT formulation, 
Section 4 discusses the overall circuit architecture, Section 5 
covers circuit implementation features, Section 6 compares base-4 
designs to a commercial implementation, and finally Section 7 
provides concluding remarks. 

 

2. RELATED WORK 
 
The most flexible parallel circuit approaches to calculating the 
DFT for arbitrary transform lengths, N, are based the on “direct” 
computational methods.  A number of systolic approaches have 
been proposed to do this [3];  however, they are inherently 
inefficient and require substantial hardware [3]. For both 1-D and 
2-D systolic arrays the number of (complex) multipliers required 
is N , so that for a 1024-point transform a prohibitive number of 
multipliers (1024) would be necessary.  Alternatively, the base-4 
approach strikes a balance between computational efficiency and 
limitations on reachable values of N in that it can calculate the 
DFT for any transform size that is a multiple of 256. 

There are a few pipelined FFT implementations that permit 
multiple transform sizes (power-of-two) to be calculated [4][5]. 
Typically this is done by picking off smaller transform results 
earlier in the pipeline. However, in each case the choices are 
limited to a maximum transform size.  In contrast the base-4 
architecture can do any transform size on any implementation as 
long as the required amount of memory is available.  This is 
possible because the architecture is essentially a matrix 
multiplication circuit and that considerably simplifies the 
partitioning issues. 

In order to achieve high dynamic range in pipelined FFT 
circuits the better approaches are based on convergent BFP [6]  or  
dynamic scaling [7] methodologies.   In each of these cases the 
word length was reduced by four bits compared to conventional 
scaling approaches.  The base-4 design also uses a form of 
dynamic scaling and achieves a four-bit improvement, yet achieves 
this goal with a simpler design and less overhead. 

 
3. MATRIX EQUATION FOR THE DFT 

 
The algorithm described here makes use of two levels of 
factorization.  The first is the well-known row/column 
factorization, N= Nr Nc,, where N is the desired transform length 
and Nc and Nr are the number of columns/rows [3].  This approach 
requires calculation of two sets of DFTs, Nc  transforms of length 
Nr (referred to as “column” transforms) and Nr  transforms of length 
Nc  (referred to as “row” transforms).  In between column and row 
transforms it is necessary to multiply each of the N points by a 
corresponding twiddle factor, ,n k

NW , n=0,1,..,Nc-1,  k=0,1,..Nr-1.  
(Without the twiddle multiplication a 2-D DFT is performed.)   

The second level of factorization is applied separately to each 
row or column DFT.  The index remapping for each column or row 
DFT starts with the DFT defined as 
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where M is the row or column transform length,  X(n) are the time 
domain input values, Z(k) are the frequency domain outputs and 

(2 / )j M
MW e π−= .  If M can be factored as 1M bN=  (b is the base, 

equal to 4 here) with N1 divisible by 4, then using the reindexings 
1 1 2n n N n= +  and 1 1 2k k N k= +  with 1 10,1, , 1n N= − , 

1 10,1, , 1k N= − , 2 0,1,2,3n = , 2 0,1,2,3k = , then Z(k) can be 
obtained from the matrix equations 
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where Wb is an 1 1xN N  matrix with elements 1 1
1 1[ , ] n k

b NW k n W= ,  
C1 is an 1 x 4N  coefficient matrix with elements 

2 1
1 1 2 4[ , ] n kC k n W= , X is a 14x N matrix with elements 

2 1 1 1 2[ , ] ( )X n n X n N n= + ,  C2 is a 14x N  coefficient matrix with 

elements 1 2
2 2 1 4[ , ] n kC k n W= , Z is an 14 x N  matrix containing the 

transform outputs 2 1 1 2 1[ , ] ( )Z k k Z k k N= + , and “ • ” means 
element-by-element multiply [3].   

The computational advantages of the manipulation leading to 
the matrix algorithm form (2) are evident when compared to the 
traditional direct form (1).  First, the matrix products C1X and C2Yt 
involve only exchanges of real and imaginary parts plus additions 
because the elements of C1 and C2 contain only 1±±±± or j±±±± , 
whereas the product  in (1) requires complex multiplications.  
Also, the size of the coefficient matrix Wb in (2) is ( / 4) ( / 4)M M××××  
vs. the M M×××× size of WM in (1) ; consequently the number of 
overall direct multiplications is reduced by a factor of x16 
compared to the direct form on which past systolic FFT 
implementations are based.  Note that distribution of the elements 
in C1 and C2 does not impose significant bandwidth requirements 
because full complex numbers are not used.  More details are 
provided in [3]. 

The algebra leading to (2) restricted N1/4 to integer values.  
Therefore, in the column/row factorization it follows that 
Nc Nr =(16 ncol) (16 nrow), where ncol and nrow are integer constants,  
so that transform lengths are restricted to multiples of 256.  
However, this restriction still allows far more reachable transform 
values than power-of-two implementations and a further benefit is 
that they are uniformly distributed.  Other options are possible. 
 

4. ARCHITECTURE 
 
The basic operation is described logically in Fig. 1 for a 256 point 
transform (Nc=Nr=16) and a corresponding implementation for this 
is shown in Fig. 2.  During the first stage the column transforms 
are performed on the 16 columns (Xci, i=1..16) to produce 16 DFT 
results (Zci,i=1..16).  (Argument and result values are shown inside 
the boxes.)  The second stage multiplies the Zci by the twiddle 
factors ,n k

NW .  The output of this stage are the row DFT inputs (Xri, 
i=1..16).  These inputs are used in stage 3 (logically identical to the 
stage 1),  to produce the final FFT result (Zri,i=1..16).  As shown in 
Fig. 2, the boxes on each end contain a 4x4 array of small 
processing elements (PEs) which do the 4x4 matrix multiplies and 
a 4x1 PE array in between that does the element-by-element 
multiplies.  The only difference in the two arrays is that the LHS 
array produces the matrix output on it’s right edge, whereas the 
RHS array stores its matrix output in the PE array. (Each PE in the 

array has a small memory associated with it to store intermediate 
results.)  The final results Zri,i=1..16, can be read from the array as 
soon as they are computed. 

 

 
 
Figure 1. Functional description of the base-4 FFT circuit (N=256). 
 

In general for the column DFTs, since C1 is 1 x 4N  and X 
is 14x N , the matrix product C1X can always be computed on an N1 
x 4 or (Nr/4) x 4 systolic array of PEs, each containing  nominally 
two registers and an adder [8]. And since C2 is 14x N and Yt is N1 x 
N1,  C2Yt can also be computed on an N1 x 4 or (Nr/4) x 4 systolic 
array.  Therefore, the basic column DFT architecture is two (Nr/4) 
x 4 PE arrays, with a single Nr/4 PE linear array in between the two 
to do the element by element complex multiplies by Wb and WN.  
The array is two dimensional, but scales with transform size in 
only one dimension (vertically in Fig. 2).  The transpose in 
between row and column DFTs is handled by appropriate shifts in 
C2 and  Wb [3]. 

Input Data (X) CM2

LHS Array RHS Array
Multipliers

 
Figure 2.  Base-4 array design corresponding to Fig. 1, showing 

PEs and data flow during Stage 1. A left hand side (LHS) and right 
hand side (RHS) 4x4 array of PEs perform matrix multiplication 
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It is necessary to implement the row computations differently 
because in general  Nr Nc, which means that (Nc/4)x4 matrix arrays 
would be required if the physical processing were identical to that 
in stage 1. Therefore, the computations associated with a row DFT, 
although logically similar to that for a column DFT, are physically 
mapped to one of the (Nr/4) PE rows in used in stage 1.  The row 
DFT processing within a PE row is done using systolic flows.  The 
number of row DFTs to be performed is Nr so that with (Nr/4) 
physical PE rows available, each PE row needs to perform four 
row DFTs. 

From Fig. 2 it is clear that this architecture is very simple in 
that it avoids the stage-to-stage irregularities and the complex 
permutation networks, commutators and butterflies of conventional 
pipelined FFT implementations.  Because each PE is simple and 
interconnections are local, higher clock speeds are possible.  
Finally, the mesh based layout and linear structure matches modern 
FPGA logic fabrics with their linear embedded memories and 
multipliers and is also very well suited to ASIC implementations. 

 
5. CIRCUIT IMPLEMENTATION 

 
5.1. Dynamic Range and Signal to Noise Enhancement 
 
After the matrix multiplication and twiddle operations in stage 1 
and 2 on the Nc columns of N, each LHS PE row will have 
computed the four sets of Nc row inputs needed to do the four row 
DFTs.  With the important processing confined locally to a row, it 
is natural to provide separate hardware for each row to enhance 
dynamic range and signal-to-noise.  Therefore, the base-4 circuit 
implementation provides a BFP operation for the column DFTs 
and a FP operation for the row DFTs as follows: 

Stage 1: each RHS PE stores an exponent associated with an 
element of C2Yt (obtained after accumulation of the 
matrix-matrix partial products). 

Stage 2:  during multiplication, inputs associated with the same 
row DFT are normalized to the same exponent. 

Stage 3: same as stage 1 
On output the stage 3 exponents are combined with the stage 1/2 
exponents to produce a single exponent associated with each FFT 
output value.  Thus, a BFP operation is performed on each column 
DFT and a FP operation on each row DFT. 

To demonstrate this dynamic scaling feature both the dynamic 
range and a signal-to-noise ratio were obtained from bit-accurate 
circuit simulations and the results are shown in the Table 1.   Each 
entry in the Table 1 is the mean value obtained from “single tone” 
full range input data sets with different frequencies (random 
frequency and phase).   No noise was added to the single frequency 
inputs, so “noise” here represents only internally generated round-
off noise.  Dynamic range DR was determined from the ratio  

2 2
1010*log ( ( ) / max( ( )))m mnoisesignals

DR x i x i=  

where xm is the FFT output magnitude.  Signal-to-quantization-
noise ratio S/QN is based on taking the ratio of total signal power 
divided by total noise power or 

2 2
10/ 10*log ( ( ) / ( ))m m

signals noise
S QN x i x i= . 

A comparison was made to Altera BFP circuits (FFT v2.2.0), 
since these are the fastest with the highest dynamic range of which 
we were aware.  The results for the Altera circuit were obtained 

from a bit-accurate Matlab model that is created by the Altera FFT 
generator. (The entries don’t include results for the 256-point 16-
bit circuits where there was no round-off error, four for the base-4 
circuit and one for the Altera circuit).  Here it can be seen that 
overall the base-4 circuit saves approximately four bits in word 
length with its BFP/FP operation.  (More bits are saved compared 
to fixed point FFT circuits that use scaling.) 

Table 1. Dynamic range and signal-to-noise characteristics 

Circuit Size Bits S/QN DR 

base-4 256 16 89.0 96.3 
Altera 256 16 77.2 84.9 
Altera 256 20 86.9 98.2 
base-4 1024 16 86.9 96.2 
Altera 1024 16 71.5 84.4 
Altera 1024 20 84.4 99.5 
base-4 4096 16 85.5 99.0 
Altera 4096 16 65.6 84.3 
Altera 4096 20 81.9 103.1 
Altera 4096 24 87.3 107.4 

 
5.1. Scaling 
 
The elements of C1 are stored internally in the LHS array, one 
value in each of the (Nr/4) x 4 available PEs and repeat every four 
rows because 1=[ | ... | ]t t t

B BC C C , where 
1 1 1 1
1 1
1 1 1 1
1 1

B

j j
C

j j

− −
=

− −
− −

. 

Therefore, each set of four PE rows containing CB is generating the 
same input to the multiplier array.  This makes it possible to use 
just four PE rows to generate all values of Yt by recycling Xc 
sequentially through them. The multiplier PEs in Fig.2 would 
function the same as in a full sized array except that different 
values of Wb would be used for each set of four PE rows.  The 
matrix multiply operations C2Yt on the RHS would be unchanged.  
During the row stage computations, as noted in Section 4, all row 
DFT computations are confined to one physical PE row.  In this 
way a simple partitioning scheme is possible, whereby the entire 
computation can be processed by any set or sets of four PE rows. 

Partitioning in this way permits two important scaling 
options. First, it allows a small array to compute any size transform 
as long as there is enough local PE memory to hold intermediate 
results.  Second, it allows an option to add hardware in the form of 
sets of four PE rows to increase overall throughput (as long as the 
total number of rows is not more than the nominal array length of 
Nr/4).  These rows are added to extend the array vertically from the 
minimal array size in Fig.2.  This latter feature is particularly 
important when it is necessary to match system throughput to 
hardware throughput.  Finer partitioning options are also possible. 

 
5.1. Computational latency 

 
It is often important to rapidly calculate a DFT with minimum 
latency (time to compute as single DFT), as opposed to a sequence 
of DFTs with a maximum throughput.  A difficulty  arises in doing 
this for most traditional pipelined FFTs because the pipeline depth 
can be significant, typically equal to N [5].  In contrast the base-4 
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design has a pipeline depth of only Nr/4. Using a 1024-point DFT 
for example, a traditional FFT pipeline depth would be 1024 clock 
cycles vs. 8 for the base-4 design. 

6. FFT PERFORMANCE 
 
Performance characteristics were obtained from two FFT circuits, 
(256 and 1024-point) that were designed to accept a continuous 
16-bit input stream X(n), while generating a continuous output 
stream Z(n) at the same rate (“streaming”) because this mode is 
common to many signal processing applications. The design has 
circuit pins for real and imaginary inputs/outputs, Z/X, a single 
global reset, and two clocks.   Because the base-4 designs compute 
FFTs using a number of clock cycles that is less than the transform 
size, a separate higher speed clock is used to read out the data. 

For fair comparisons the base-4 and Altera designs were 
targeted to the same underlying hardware, specifically Altera 
Stratix II EP2S15 and EP2S60 devices (speed grade -3, 90nm 
technology) for the 256 and 1024-point designs.  Altera Quartus II 
tools (v5.1) were used to design and evaluate both FFT circuits.  
The base-4 circuit operation was verified by comparing the 
Quartus simulator result with a bit-accurate simulation model.  The 
Quartus II timing analyzer finds the critical path that determines 
the maximum clock frequencies.   

The base-4 and Altera results are summarized in Table 2.  
Because the base-4 design provides higher dynamic range for a 
given bit-length, 20-bit Altera FFTs were used in the comparison.  
For the Altera design the clock speed listed in Table 2 is also the 
complex sample rate.  For the base-4 design the complex sample 
rate is larger than the clock speed in the table by a ratio of the 
transform size to number of clock cycles to compute a transform.  
For example, for the 256 point circuit the sample rate would be 
256*361/240 or 385 MHz. However, the timing simulations show 
that the output data clock could run at 391 MHz.  In the table the 
number of “adaptive logic modules” (ALMs) is included because 
this value is roughly comparable to a Xilinx “slice”. 

 
Table 2. Comparison of Altera and base-4 FFT circuits.  

Category 
 

Altera 
(256) 

Base-4 
(256) 

Altera 
(1024) 

Base-4
(1024)

Throughput 
(cycles/DFT) 256 240 1024 688 

Clock speed (MHz) 302 361 297 356 
Throughput ( sec) 0.85 0.66 3.45 1.93 
ALMs 4192 4496 5102 8490 
Memory Bits 48640 48880 194560 202992
18-bit multipliers 12 16 12 32 

  
As can be seen from Table 2, both the base-4 circuits provide 

higher throughput because the transform calculation uses fewer 
clock cycles and the clock rate is higher.  Furthermore, the 
increased performance is obtained without a more than 
proportional usage of memory and logic.  To show this Table 2 
calculates a figure of merit (FOM) that is the product of throughput 
(cycles/DFT), number of ALMs, memory (Kbits) divided by the 
clock frequency.  The two very different FFT implementations 
track each other closely in this regard.  The base-4 FFT does use 
more multipliers; however, the Altera complex multipliers are 
completely hardwired so consume little chip space and large 
numbers are  available (704 18-bit multipliers in Altera’s Stratix III 
EP3SE260).   

In a non-streaming application where all FFT input data is 
available simultaneously, the base-4 latency would be 
approximately the same as the throughput values shown in Table 2 
because the pipeline depths are so small. 

  
Table 3.  Comparison of equivalent Altera and base-4 FFT circuits 

Points 
Altera 
FOM 

Base-4 
FOM 

256 0.17 0.15 

512 0.71 0.70 

1024 3.4 3.3 

2048 22.8 17.9* 

4096 97.8 96.1* 
 (*estimate) 

7. CONCLUSION 
 

A high dynamic range, high-performance systolic FFT has been 
described which supports transform lengths that aren't powers of 
two, provides low latency as well as high throughput and can do 
both 1-D and 2-D DFTs. It is scalable so that any implementation 
can do any size FFT and hardware can be added in identical blocks 
to increase throughput.  It is inherently fast because it uses fewer 
clock cycles per transform than most pipelined FFTs and runs at 
high clock rates due to localized interconnects and a simple 
underlying architecture.  Design, testing and maintainability are 
simplified because the architecture is based primarily on arrays of 
identical simple processing elements that contain a couple of 
registers, an adder and memory.  Implementation examples on 
modern FPGAs show that the high performance is possible and is 
achievable with reasonable hardware costs.  Better performance 
can be expected with an optimized base-4 design. 
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