
A NEW CLASS OF HIGH PERFORMANCE FFTS

J. Greg Nash

Centar (jgregnash@centar.net)

ABSTRACT

FPGA implementations of block floating point (BFP), streaming,
256-point and 1024-point fast Fourier transform (FFT) circuits are
described as examples of a new architectural approach that
provides better performance, flexibility, and functionality than
commercially available pipelined FFTs. It is based on a matrix
formulation of the discreet Fourier transform (DFT) that converts
the direct transform into structured sets of arithmetically simple
4-point transforms that are computed on a systolic array. This
circuit architecture permits transform lengths that are not a power-
of-two, can do 2-D as well as 1-D transforms, is scalable, has low
computational latency and utilizes BFP and floating point (FP)
features to provide high dynamic range. Circuit comparisons are
made with a commercially available pipelined FFT.

Index Terms— Discrete Fourier transforms, High-speed
electronics, Field programmable gate arrays, Systolic arrays

1. INTRODUCTION

The DFT appears prominently throughout a large number of signal
processing, communications, radar, acoustics, and electromagnetic
applications [1]. Consequently, there is a considerable literature
related to techniques for rapid computation of the DFT and these
have been effectively exploited in new digital signal processing
programmable chips such as the Texas Instruments TMS320 series.
However, for high throughput applications it is still difficult to find
parallel circuit implementations that combine functionality,
flexibility and speed.

At the same time proposed and future systems will need
considerably more implementation options for computing a DFT.
For example, the recently announced Chinese DMB-T (Digital
Media Broadcasting Terrestrial) transmission standard is based
orthogonal frequency division multiplexing and uses a number of
sub-carriers that is not a power of two [2]. The custom FFT circuit
that was developed provided better overall system performance
even though it was slower and less efficient in terms of memory
usage. Also future FFT implementations will need to offer
scalability (orthogonal frequency division multiple access), high
dynamic range (spectrum analysis, radar), and 2-D processing
capabilities (image processing). The “base-4” design proposed
here addresses these needs.

This paper is organized as follows: Section 2 describes related
work, Section 3 summarizes a new matrix based DFT formulation,
Section 4 discusses the overall circuit architecture, Section 5
covers circuit implementation features, Section 6 compares base-4
designs to a commercial implementation, and finally Section 7
provides concluding remarks.

2. RELATED WORK

The most flexible parallel circuit approaches to calculating the
DFT for arbitrary transform lengths, N, are based the on “direct”
computational methods. A number of systolic approaches have
been proposed to do this [3]; however, they are inherently
inefficient and require substantial hardware [3]. For both 1-D and
2-D systolic arrays the number of (complex) multipliers required
is N , so that for a 1024-point transform a prohibitive number of
multipliers (1024) would be necessary. Alternatively, the base-4
approach strikes a balance between computational efficiency and
limitations on reachable values of N in that it can calculate the
DFT for any transform size that is a multiple of 256.

There are a few pipelined FFT implementations that permit
multiple transform sizes (power-of-two) to be calculated [4][5].
Typically this is done by picking off smaller transform results
earlier in the pipeline. However, in each case the choices are
limited to a maximum transform size. In contrast the base-4
architecture can do any transform size on any implementation as
long as the required amount of memory is available. This is
possible because the architecture is essentially a matrix
multiplication circuit and that considerably simplifies the
partitioning issues.

In order to achieve high dynamic range in pipelined FFT
circuits the better approaches are based on convergent BFP [6] or
dynamic scaling [7] methodologies. In each of these cases the
word length was reduced by four bits compared to conventional
scaling approaches. The base-4 design also uses a form of
dynamic scaling and achieves a four-bit improvement, yet achieves
this goal with a simpler design and less overhead.

3. MATRIX EQUATION FOR THE DFT

The algorithm described here makes use of two levels of
factorization. The first is the well-known row/column
factorization, N= Nr Nc,, where N is the desired transform length
and Nc and Nr are the number of columns/rows [3]. This approach
requires calculation of two sets of DFTs, Nc transforms of length
Nr (referred to as “column” transforms) and Nr transforms of length
Nc (referred to as “row” transforms). In between column and row
transforms it is necessary to multiply each of the N points by a
corresponding twiddle factor, ,n k

NW , n=0,1,..,Nc-1, k=0,1,..Nr-1.
(Without the twiddle multiplication a 2-D DFT is performed.)

The second level of factorization is applied separately to each
row or column DFT. The index remapping for each column or row
DFT starts with the DFT defined as

1

0
() ()

M
nk

M
n

Z k W X n
−

=

= (1)

II 211424407281/07/$20.00 ©2007 IEEE ICASSP 2007

where M is the row or column transform length, X(n) are the time
domain input values, Z(k) are the frequency domain outputs and

(2 /)j M
MW e π−= . If M can be factored as 1M bN= (b is the base,

equal to 4 here) with N1 divisible by 4, then using the reindexings
1 1 2n n N n= + and 1 1 2k k N k= + with 1 10,1, , 1n N= − ,

1 10,1, , 1k N= − , 2 0,1,2,3n = , 2 0,1,2,3k = , then Z(k) can be
obtained from the matrix equations

1

2

b
t

Y W C X
Z C Y

= •= •= •= •

====
 (2)

where Wb is an 1 1xN N matrix with elements 1 1
1 1[,] n k

b NW k n W= ,
C1 is an 1 x 4N coefficient matrix with elements

2 1
1 1 2 4[,] n kC k n W= , X is a 14x N matrix with elements

2 1 1 1 2[,] ()X n n X n N n= + , C2 is a 14x N coefficient matrix with

elements 1 2
2 2 1 4[,] n kC k n W= , Z is an 14 x N matrix containing the

transform outputs 2 1 1 2 1[,] ()Z k k Z k k N= + , and “ • ” means
element-by-element multiply [3].

The computational advantages of the manipulation leading to
the matrix algorithm form (2) are evident when compared to the
traditional direct form (1). First, the matrix products C1X and C2Yt
involve only exchanges of real and imaginary parts plus additions
because the elements of C1 and C2 contain only 1±±±± or j±±±± ,
whereas the product in (1) requires complex multiplications.
Also, the size of the coefficient matrix Wb in (2) is (/ 4) (/ 4)M M××××
vs. the M M×××× size of WM in (1) ; consequently the number of
overall direct multiplications is reduced by a factor of x16
compared to the direct form on which past systolic FFT
implementations are based. Note that distribution of the elements
in C1 and C2 does not impose significant bandwidth requirements
because full complex numbers are not used. More details are
provided in [3].

The algebra leading to (2) restricted N1/4 to integer values.
Therefore, in the column/row factorization it follows that
Nc Nr =(16 ncol) (16 nrow), where ncol and nrow are integer constants,
so that transform lengths are restricted to multiples of 256.
However, this restriction still allows far more reachable transform
values than power-of-two implementations and a further benefit is
that they are uniformly distributed. Other options are possible.

4. ARCHITECTURE

The basic operation is described logically in Fig. 1 for a 256 point
transform (Nc=Nr=16) and a corresponding implementation for this
is shown in Fig. 2. During the first stage the column transforms
are performed on the 16 columns (Xci, i=1..16) to produce 16 DFT
results (Zci,i=1..16). (Argument and result values are shown inside
the boxes.) The second stage multiplies the Zci by the twiddle
factors ,n k

NW . The output of this stage are the row DFT inputs (Xri,
i=1..16). These inputs are used in stage 3 (logically identical to the
stage 1), to produce the final FFT result (Zri,i=1..16). As shown in
Fig. 2, the boxes on each end contain a 4x4 array of small
processing elements (PEs) which do the 4x4 matrix multiplies and
a 4x1 PE array in between that does the element-by-element
multiplies. The only difference in the two arrays is that the LHS
array produces the matrix output on it’s right edge, whereas the
RHS array stores its matrix output in the PE array. (Each PE in the

array has a small memory associated with it to store intermediate
results.) The final results Zri,i=1..16, can be read from the array as
soon as they are computed.

Figure 1. Functional description of the base-4 FFT circuit (N=256).

In general for the column DFTs, since C1 is 1 x 4N and X
is 14x N , the matrix product C1X can always be computed on an N1
x 4 or (Nr/4) x 4 systolic array of PEs, each containing nominally
two registers and an adder [8]. And since C2 is 14x N and Yt is N1 x
N1, C2Yt can also be computed on an N1 x 4 or (Nr/4) x 4 systolic
array. Therefore, the basic column DFT architecture is two (Nr/4)
x 4 PE arrays, with a single Nr/4 PE linear array in between the two
to do the element by element complex multiplies by Wb and WN.
The array is two dimensional, but scales with transform size in
only one dimension (vertically in Fig. 2). The transpose in
between row and column DFTs is handled by appropriate shifts in
C2 and Wb [3].

Input Data (X) CM2

LHS Array RHS Array
Multipliers

Figure 2. Base-4 array design corresponding to Fig. 1, showing

PEs and data flow during Stage 1. A left hand side (LHS) and right
hand side (RHS) 4x4 array of PEs perform matrix multiplication

II 22

It is necessary to implement the row computations differently
because in general Nr Nc, which means that (Nc/4)x4 matrix arrays
would be required if the physical processing were identical to that
in stage 1. Therefore, the computations associated with a row DFT,
although logically similar to that for a column DFT, are physically
mapped to one of the (Nr/4) PE rows in used in stage 1. The row
DFT processing within a PE row is done using systolic flows. The
number of row DFTs to be performed is Nr so that with (Nr/4)
physical PE rows available, each PE row needs to perform four
row DFTs.

From Fig. 2 it is clear that this architecture is very simple in
that it avoids the stage-to-stage irregularities and the complex
permutation networks, commutators and butterflies of conventional
pipelined FFT implementations. Because each PE is simple and
interconnections are local, higher clock speeds are possible.
Finally, the mesh based layout and linear structure matches modern
FPGA logic fabrics with their linear embedded memories and
multipliers and is also very well suited to ASIC implementations.

5. CIRCUIT IMPLEMENTATION

5.1. Dynamic Range and Signal to Noise Enhancement

After the matrix multiplication and twiddle operations in stage 1
and 2 on the Nc columns of N, each LHS PE row will have
computed the four sets of Nc row inputs needed to do the four row
DFTs. With the important processing confined locally to a row, it
is natural to provide separate hardware for each row to enhance
dynamic range and signal-to-noise. Therefore, the base-4 circuit
implementation provides a BFP operation for the column DFTs
and a FP operation for the row DFTs as follows:

Stage 1: each RHS PE stores an exponent associated with an
element of C2Yt (obtained after accumulation of the
matrix-matrix partial products).

Stage 2: during multiplication, inputs associated with the same
row DFT are normalized to the same exponent.

Stage 3: same as stage 1
On output the stage 3 exponents are combined with the stage 1/2
exponents to produce a single exponent associated with each FFT
output value. Thus, a BFP operation is performed on each column
DFT and a FP operation on each row DFT.

To demonstrate this dynamic scaling feature both the dynamic
range and a signal-to-noise ratio were obtained from bit-accurate
circuit simulations and the results are shown in the Table 1. Each
entry in the Table 1 is the mean value obtained from “single tone”
full range input data sets with different frequencies (random
frequency and phase). No noise was added to the single frequency
inputs, so “noise” here represents only internally generated round-
off noise. Dynamic range DR was determined from the ratio

2 2
1010*log (() / max(()))m mnoisesignals

DR x i x i=

where xm is the FFT output magnitude. Signal-to-quantization-
noise ratio S/QN is based on taking the ratio of total signal power
divided by total noise power or

2 2
10/ 10*log (() / ())m m

signals noise
S QN x i x i= .

A comparison was made to Altera BFP circuits (FFT v2.2.0),
since these are the fastest with the highest dynamic range of which
we were aware. The results for the Altera circuit were obtained

from a bit-accurate Matlab model that is created by the Altera FFT
generator. (The entries don’t include results for the 256-point 16-
bit circuits where there was no round-off error, four for the base-4
circuit and one for the Altera circuit). Here it can be seen that
overall the base-4 circuit saves approximately four bits in word
length with its BFP/FP operation. (More bits are saved compared
to fixed point FFT circuits that use scaling.)

Table 1. Dynamic range and signal-to-noise characteristics

Circuit Size Bits S/QN DR

base-4 256 16 89.0 96.3
Altera 256 16 77.2 84.9
Altera 256 20 86.9 98.2
base-4 1024 16 86.9 96.2
Altera 1024 16 71.5 84.4
Altera 1024 20 84.4 99.5
base-4 4096 16 85.5 99.0
Altera 4096 16 65.6 84.3
Altera 4096 20 81.9 103.1
Altera 4096 24 87.3 107.4

5.1. Scaling

The elements of C1 are stored internally in the LHS array, one
value in each of the (Nr/4) x 4 available PEs and repeat every four
rows because 1=[| ... |]t t t

B BC C C , where
1 1 1 1
1 1
1 1 1 1
1 1

B

j j
C

j j

− −
=

− −
− −

.

Therefore, each set of four PE rows containing CB is generating the
same input to the multiplier array. This makes it possible to use
just four PE rows to generate all values of Yt by recycling Xc
sequentially through them. The multiplier PEs in Fig.2 would
function the same as in a full sized array except that different
values of Wb would be used for each set of four PE rows. The
matrix multiply operations C2Yt on the RHS would be unchanged.
During the row stage computations, as noted in Section 4, all row
DFT computations are confined to one physical PE row. In this
way a simple partitioning scheme is possible, whereby the entire
computation can be processed by any set or sets of four PE rows.

Partitioning in this way permits two important scaling
options. First, it allows a small array to compute any size transform
as long as there is enough local PE memory to hold intermediate
results. Second, it allows an option to add hardware in the form of
sets of four PE rows to increase overall throughput (as long as the
total number of rows is not more than the nominal array length of
Nr/4). These rows are added to extend the array vertically from the
minimal array size in Fig.2. This latter feature is particularly
important when it is necessary to match system throughput to
hardware throughput. Finer partitioning options are also possible.

5.1. Computational latency

It is often important to rapidly calculate a DFT with minimum
latency (time to compute as single DFT), as opposed to a sequence
of DFTs with a maximum throughput. A difficulty arises in doing
this for most traditional pipelined FFTs because the pipeline depth
can be significant, typically equal to N [5]. In contrast the base-4

II 23

design has a pipeline depth of only Nr/4. Using a 1024-point DFT
for example, a traditional FFT pipeline depth would be 1024 clock
cycles vs. 8 for the base-4 design.

6. FFT PERFORMANCE

Performance characteristics were obtained from two FFT circuits,
(256 and 1024-point) that were designed to accept a continuous
16-bit input stream X(n), while generating a continuous output
stream Z(n) at the same rate (“streaming”) because this mode is
common to many signal processing applications. The design has
circuit pins for real and imaginary inputs/outputs, Z/X, a single
global reset, and two clocks. Because the base-4 designs compute
FFTs using a number of clock cycles that is less than the transform
size, a separate higher speed clock is used to read out the data.

For fair comparisons the base-4 and Altera designs were
targeted to the same underlying hardware, specifically Altera
Stratix II EP2S15 and EP2S60 devices (speed grade -3, 90nm
technology) for the 256 and 1024-point designs. Altera Quartus II
tools (v5.1) were used to design and evaluate both FFT circuits.
The base-4 circuit operation was verified by comparing the
Quartus simulator result with a bit-accurate simulation model. The
Quartus II timing analyzer finds the critical path that determines
the maximum clock frequencies.

The base-4 and Altera results are summarized in Table 2.
Because the base-4 design provides higher dynamic range for a
given bit-length, 20-bit Altera FFTs were used in the comparison.
For the Altera design the clock speed listed in Table 2 is also the
complex sample rate. For the base-4 design the complex sample
rate is larger than the clock speed in the table by a ratio of the
transform size to number of clock cycles to compute a transform.
For example, for the 256 point circuit the sample rate would be
256*361/240 or 385 MHz. However, the timing simulations show
that the output data clock could run at 391 MHz. In the table the
number of “adaptive logic modules” (ALMs) is included because
this value is roughly comparable to a Xilinx “slice”.

Table 2. Comparison of Altera and base-4 FFT circuits.

Category

Altera
(256)

Base-4
(256)

Altera
(1024)

Base-4
(1024)

Throughput
(cycles/DFT) 256 240 1024 688

Clock speed (MHz) 302 361 297 356
Throughput (sec) 0.85 0.66 3.45 1.93
ALMs 4192 4496 5102 8490
Memory Bits 48640 48880 194560 202992
18-bit multipliers 12 16 12 32

As can be seen from Table 2, both the base-4 circuits provide

higher throughput because the transform calculation uses fewer
clock cycles and the clock rate is higher. Furthermore, the
increased performance is obtained without a more than
proportional usage of memory and logic. To show this Table 2
calculates a figure of merit (FOM) that is the product of throughput
(cycles/DFT), number of ALMs, memory (Kbits) divided by the
clock frequency. The two very different FFT implementations
track each other closely in this regard. The base-4 FFT does use
more multipliers; however, the Altera complex multipliers are
completely hardwired so consume little chip space and large
numbers are available (704 18-bit multipliers in Altera’s Stratix III
EP3SE260).

In a non-streaming application where all FFT input data is
available simultaneously, the base-4 latency would be
approximately the same as the throughput values shown in Table 2
because the pipeline depths are so small.

Table 3. Comparison of equivalent Altera and base-4 FFT circuits

Points
Altera
FOM

Base-4
FOM

256 0.17 0.15

512 0.71 0.70

1024 3.4 3.3

2048 22.8 17.9*

4096 97.8 96.1*
 (*estimate)

7. CONCLUSION

A high dynamic range, high-performance systolic FFT has been
described which supports transform lengths that aren't powers of
two, provides low latency as well as high throughput and can do
both 1-D and 2-D DFTs. It is scalable so that any implementation
can do any size FFT and hardware can be added in identical blocks
to increase throughput. It is inherently fast because it uses fewer
clock cycles per transform than most pipelined FFTs and runs at
high clock rates due to localized interconnects and a simple
underlying architecture. Design, testing and maintainability are
simplified because the architecture is based primarily on arrays of
identical simple processing elements that contain a couple of
registers, an adder and memory. Implementation examples on
modern FPGAs show that the high performance is possible and is
achievable with reasonable hardware costs. Better performance
can be expected with an optimized base-4 design.

8. REFERENCES

[1] Ronald N. Bracewell, The Fourier Transform and Its
Applications, 3rd Edition, McGraw-Hill, 1999.
[2] Zhi-Xing Yang, Yu-Peng Hu, Chang-Yong Pan, and Lin
Yang, “Design of a 3780-point IFFT processor for TDS-OFDM,”,
IEEE Trans. Broadcasting, Vol. 48, pp.57-61, Mar. 2002.
[3] J. G. Nash, “Computationally efficient systolic architecture
for computing the discrete Fourier transform,” IEEE Transactions
on Signal Processing, Volume 53, Issue 12, Dec. 2005, pp. 4640-
4651.
[4] S. M. Currie, et. al, "Implementation of a single chip,
pipelined, complex, one-dimensional fast Fourier transform in
0.25um bulk CMOS”, Proc. Application-Specific Systems,
Architectures and Processors, 2002, pp. 335 – 343.
[5] Shousheng He and M. Torkelson "Designing pipeline FFT
processor for OFDM (de)modulation", Proc. Int. Symp. Signals,
Systems, and Electronics, 1998, pp. 257 - 262.
[6] Se Ho Park, et. al., “Sequential Design of a 8192 Complex
Point FFT in OFDM Receiver,” Proc. The First IEEE Asia Pacific
Conference on ASIC 1999, pp. 262 – 265.
[7] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee, “A Dynamic
Scaling FFT Processor for DVB-T Applications,” IEEE J. Solid-
State Circuits, Vol. 39, No.11, Nov. 2004, pp.2005-2013.
[8] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988, pp.
138-139.

II 24

