
Memory Ef cient LDPC Code Design for High Throughput
Software De ned Radio (SDR) systems

Yuming Zhu and Chaitali Chakrabarti
Department of Electrical Engineering

Arizona State University, Tempe, AZ 85287
Email: {yuming,chaitali}@asu.edu

Abstract— Low-Density Parity-Check (LDPC) codes have been adopted
in the physical layer protocol of many communication systems because
of their superior performance. A direct implementation of the LDPC
decoder on an existing platform, such as a software de ned radio (SDR),
is likely to be inef cient. Our approach is to design the LDPC code in
a way that takes into account the constraints imposed by the existing
architecture, without compromising the communication performance. In
this paper, a procedure for architecture-aware LDPC code design which
minimize the number of global memory accesses in a memory constrained
system is derived. The procedure is built on top of existing super-code
based LDPC code design. The proposed code construction procedure also
results in reduction in the number of iterations and thereby increases
the throughput signi cantly.

Index Terms—channel coding, throughput (communication systems),
memory access, computer architecture.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have attracted the inter-
est of the coding community because of their BER performance being
close to the Shannon limit [1], [2]. Consequently, there has been a lot
of work on the implementation of LDPC decoders [3], [4], [5], [6],
[7], [8]. In order to increase the ef ciency of the implementation,
recently, the focus has been to keep the decoder design in mind
when designing the LDPC codes. The architecture-aware LDPC code
design studies in [3], [6], [8] have been targeted for special-purpose
VLSI implementations. In this paper, we address the problem of
ef cient LDPC code design for an existing hardware platform, such
as a multi-processor software de ned radio (SDR) system.

A typical SDR platform consists of multiple processing units (PU)
and multiple global storage units as shown in Fig. 1. The PUs
and the global storage units communicate with each other via an
interconnection network. Each PU consists of a local memory, a
processing element (PE), which consists of a scalar unit and a single-
instruction multiple-data (SIMD) unit, and an application speci c
element (ASE). The combination of a scalar unit and a SIMD unit
enables a large class of algorithms to be mapped very ef ciently
as shown in [9]. The ASEs are typically included to enhance the
performance of some target protocols. The software control unit
coordinates all the operations in the system.

S o f t w a r e
c o n t r o l

P1 P2

M 1 M 2 M 3 M m

Ps

G l o b a l S t o r a g e U n i t s

P r o c e s s i n g U n i t (P U)

I n t e r c o n n e c t i o n N e t w o r k

P E

L o c a l
M e m o r y

A S E

P U

Fig. 1. Software de ned radio (SDR) platform.

Recently, we presented a general design ow for systematically
designing LDPC codes to exploit the characteristics of an existing

multi-processor architecture [10]. We showed how the constraints
imposed by the interconnection network can be translated into
constraints during the code design phase, resulting in a LDPC code
that can be mapped into the target architecture very ef ciently.

In this paper, we study the problem of designing LDPC codes
for a memory constrained architecture. This problem is motivated
by the fact that while large block sizes (which result in large
memory requirement) in LDPC codes are required to achieve superior
performance, the size of the local memory in a PU is relatively small.
As a result, there is a large volume of data that is transferred between
the global memory and PU through the SDR interconnection network
resulting in possible timing delays due to routing con icts.

Super-code based decoding of LDPC codes has been shown to
be an effective way of reducing the memory requirement of LDPC
decoders [6], [11]. Here the LDPC code is viewed as the concate-
nation of multiple super-codes, and the iterative decoding process
of the LDPC codes is divided into the decoding of each super-code
(inner iteration that is repeated Q1 times), and passing information
among the super-codes iteratively (outer iteration that is repeated Q2

times). Since Q2 is proportional to the number of global memory
accesses, it seems imperative that Q2 should be minimized. However,
simulation results show that for the same equivalent iteration number
Q̃ � Q1 ·Q2, decreasing Q2 degrades the BER performance.

An analysis of the results show that the LDPC codes constructed
based on [11] have the same degree distribution for all super-codes,
and thus contain a large number of “degree-one” nodes. The bit-to-
check information from these “degree-one” nodes does not improve
during the inner iterations, resulting in the performance degradation
of super-code based decoding. Our approach has been to remove the
“degree-one” nodes in the super-codes in the code design stage and
thereby improve the performance. Simulation results show that use
of these codes increases the convergence speed signi cantly. In fact,
the LDPC code generated by this procedure achieves performance
comparable to that in [11] with half the number of iterations. Thus
this procedure not only reduces the number of global memory
accesses but also increases the overall throughput signi cantly.

The rest of this paper is organized as follows. The memory-
aware LDPC code design is presented in Section II. The memory
requirement and memory traf c is analyzed for super-code based
decoding. Next, the code design constraints that result in enhanced
performance are proposed, and the results validated by simulations.
The paper is concluded in Section III.

II. MEMORY-AWARE LDPC CODE DESIGN FOR SDR

In this section, we assume that in the SDR architecture, only one
PU is assigned for LDPC decoding, and that the other PUs are used
to perform other kernels such as MIMO, OFDM, etc. The size of
the local memory in a PU is relatively small. Thus to implement
LDPC codes with large block sizes, a large volume of data has to be
transferred between the global and local memories. This can cause
reduction in the overall system throughput due to con icts in the

II 91424407281/07/$20.00 ©2007 IEEE ICASSP 2007

interconnection network of the SDR platform. Thus our goal is to
minimize the number of global memory accesses for a local memory
constrained system without compromising the BER performance.

A. Super-code based LDPC decoding

The memory required in the iterative decoding process can be
reduced by decomposing the code into super-codes [6], [11]. Fig. 2
shows the decomposition of a LDPC code into two super-codes. The
parity check matrices of super-codes (H1

b and H2
b) are sub-matrices

of the original Hb matrix. The Hb matrix is a mb ×nb block matrix
whose elements are either circulant sub-matrices (represented by ‘1’)
or zero sub-matrices (represented by ‘0’) with dimension of Z × Z.

Hb=

Hb

Hb
2

1

1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0
1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0

0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0
1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1
0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1

Fig. 2. Decomposition of the LDPC code into two super-codes with block
parity check matrix of H1

b
and H2

b
respectively.

The decoding algorithm of LDPC code based on super-codes is
summarized in Alg. 1, which is similar to the one described in [11]
for the case when there are two supercodes. There are two levels of
iteration: each super-code is decoded with xed number of iterations
(inner iteration). The output LLR values from one super-code serve as
the input to the next super-code. Thus the super-codes are scheduled
to decode one after the other and in an iterative fashion (outer
iteration). Let C denote the number of super-codes, each of which
has a block parity check matrix Hi

b, i ∈ [1, C]. The outer iteration
number is represented by Q2 and the inner iteration number of the
i-th super-code is Qi

1.
The AA-LDPC codes in [6] is equivalent to the case C = mb,

Qi
1 = 1, ∀i ∈ [1, C]. The scheme shown in [11] is equivalent to the

case C = 2 and Qi
1 = Q

j
1,∀i, j ∈ [1, C].

Algorithm 1 Super-code based iterative decoding

1: {Initialization:}
Set iteration number i = 0, and for ∀n ∈ [1, N],∀m ∈ M(n)
set

Em,n = 0, Ln = In
2: while i ≤ Q2 and parity check equation not met do
3: for all j ∈ [1, C] do
4: Load local memory with Ln values for super-code Hj

b from
global memory (Scheme-II only).

5: Load Check-to-Bit information Em,n for all edges in Hj

b

6: for all k ∈ [1, Qj
1] do

7: Perform one iteration of BP decoding for Hj

b

8: end for
9: Save updated Em,n values to global memory.

10: Save updated Ln values to global memory (Scheme-II only).
11: end for
12: end while
13: Output the soft information or hard decision of Ln, ∀n ∈ [1, N]

(Scheme-I only).

B. Memory Analysis

The data that needs to be stored for iterative belief propagation
(BP) decoding process includes the log-likelihood ratio (Ln) and the

check-to-bit information (Em,n). In a PU with SIMD datapath as
in [9], all the check-node and bit-node operations are performed in
parallel. The memory required for decoding a circulant matrix based
LDPC code with BP algorithm is of size

MEMSIMD
Total

∼= Np · (nb +mb · dc) (1)

where nb is the number of block columns, mb is the number of block
rows, P is the parallel factor of the SIMD unit, Np = �Z

P
�, Z is the

dimension of the circulant sub-matrices and dc is the maximum row
weight (the equality holds for LDPC code with single check node
degree).

For super-code based decoding, only the Ln and Em,n related to
the super-code currently being decoded are required to be stored in
local memory. Consequently, the local memory size is smaller. We
discuss two storage schemes:

• Scheme-I: The local memory keeps a complete copy of all Ln

values and the check-to-bit information of the super-code to be
decoded. The global memory does not need to store the Ln

values and only needs to store the check-to-bit information.
• Scheme-II: The local memory only stores the Ln values for the

block columns which will be accessed by the super-code to be
decoded. The local memory size can be greatly reduced at the
expense of an increase in the global memory size as well as the
number of global memory accesses.

The memory requirement for both schemes are summarized below:

MEMSIMD
Local =

j
Np · maxi∈[1,C]

`
nb +m

i
b · dc

´
, Scheme-I

Np · maxi∈[1,C]

`
nib +m

i
b · dc

´
, Scheme-II

(2)

MEMSIMD
Global =

j
Np ·mb · dc, Scheme-I

Np · (nb +mb · dc) , Scheme-II
(3)

where mi
b is the number of block rows in Hi

b and nib is the number
of block columns that are not all-zeros in Hi

b. For Scheme-I, the mi
b

values are usually set equal for all super-codes, i.e, mi
b = �mb

C
�, to

minimize the local memory. For Scheme-II, there exist some optimal
super-code decomposition method to maximize the utilization of the
memory.

It is clear that with the increase in the number of super-codes, the
local memory requirement reduces. Thus the size of the available
local memory can be used to determine the number of supercodes,
as will be described later. Note that the reduction of local memory
comes at the expense of increased memory traf c between the global
memory and the PU local memory.

The number of global memory accesses, Tmem, is given by

Tmem = 2
CX
i=1

(mi
b +Δnib) · dc ·Q2 · T1 (4)

where T1 is the number of cycles for transmitting Z values between
global memory and local memory, Δnib is the number of block
columns in the super-code currently being decoded and not in the
previous super-code. For Scheme-I, Δnib = 0, ∀i ∈ [1, C], and
Tmem = 2mb · dc · Q2 · T1. Thus the number of global memory
accesses can be reduced by reducing Q2 and our goal is to achieve
this without compromising on the BER performance.

The number of decoding cycles is

Tdec =

CX
i=1

mi
b ·Qi

1

!
·Q2 · T2 (5)

where T2 is the number of cycles for one iteration of decoding for
a block row in Hb (including bit node processing and check node

II 10

processing). The Qi
1 can be independently chosen for different super-

codes; for example, it can be chosen proportional to the block row
number mi

b. However, for simplicity of control and performance
comparison, we choose Qi

1 = Q1, ∀i ∈ [1, C]. In this case,
Tdec = mb ·Q1 ·Q2 ·T2. Thus reduction in Q2 results in a reduction
in Tdec and thereby improves the throughput.

In the next section, we will study the effect of reducing Q2 and
propose a method to compensate for the performance degradation in
super-code based iterative decoding.

C. Study of BER Performance

In the method proposed in [11], all super-codes have the same
degree distribution and the degree distribution for super-codes are
derived directly from the overall degree distribution. However, the
problem with this method is that it results in a large number of degree-
one bit nodes in the super-codes. It can be proved that the bit-to-
check information from such bit nodes do not improve during the
Qi

1 iterations of decoding for super-code Hi
b.

Theorem 2.1: The bit-to-check information does not improve dur-
ing iterative decoding for super-code if the bit node is of degree-one
in the super-code.

Proof: Let bit node n′ be a degree-one node in super-code Hi
b

and the check nodes connected to it be m ∈ M i(n′). Without loss of
generality, assume that the current outer iteration is s ∈ [0, Q2 − 1],
and that the inner iteration is t ∈ [0, Qi

1−1). We denote each variable
with a two-tuple superscript (s, t) to show the relationship among the
different iterations.

The current bit-to-check information

L
(s,t)
n′,m

= L
(s,t)
n′ − E

(s,t)
n′,m

(6)

After the check node processing, the new check-to-bit information
E

(s,t+1)
n′,m

is obtained, and thus the new LLR value is

L
(s,t+1)

n′ = L
(s,t)

n′,m
+ E

(s,t+1)

n′,m
(7)

For the next inner iteration, we have

L
(s,t+1)
n′,m

= L
(s,t+1)
n′ − E

(s,t+1)
n′,m

= L
(s,t)
n′,m

(8)

Thus the Ln′,m values do not get updated in successive iterations
if the corresponding variable node n′ is degree-one in the super-code.

Since the bit-to-check information of the degree-one bit nodes do
not change during the inner iterations, they can only be updated in the
outer iteration. Thus the errors in such bit nodes are not prone to be
corrected during the process of iterative decoding. This is especially
bad for the cases where they happen to be erasure bits (i.e., In ≈ 0).

For LDPC codes designed without the knowledge of super-code
con gurations, it is inevitable that there be many such degree-one bit
nodes in super-codes. In Fig. 2, these bit nodes are shown shaded.

1.5 2 2.5 3 3.5
10

8

10
6

10
4

10
2

E
b
/N

0
 (dB)

B
it

er
ro

r
ra

te

BER of rate 3/4 irregular LDPCs in GF(193)

Q
1
=3, 6 iter

Q
1
=3, 12 iter

Q
1
=3, 24 iter

Q
1
=6, 6 iter

Q
1
=6, 12 iter

Q
1
=6, 24 iter

Fig. 3. BER performance for different iteration numbers. The LDPC code
is the one in Fig. 2 with C = 2. The iteration number in legends are the
equivalent iteration number, i.e., Q1 ×Q2.

Fig. 3 shows the effect of different iteration numbers on the BER
performance for two con gurations (Q1 = 3 and Q1 = 6). For the
same number of equivalent iterations, Q̃ = Q1 · Q2, a larger value
of Q1 (and thus smaller value of Q2) results in lower performance.
Further more, in the relatively low SNR range (as in the range that
we have simulated), when the number of iterations is small, the
performance is strongly dependent on Q2. For example, the case
Q1 = 3, Q̃ = 6 and the case Q1 = 6, Q̃ = 12, both correspond to
Q2 = 2 and have comparable performance. Thus in the low SNR
region, increasing Q1 does not result in enhanced performance and
so additional techniques have to be employed to compensate for the
performance degradation caused by choice of low Q2.

D. Code optimization for super-code based decoding

To improve the performance of the con gurations with small Q2,
we propose a mechanism to reduce the number of degree-one nodes
in super codes. We impose an additional constraint in the LDPC code
construction procedure, which is given below. The resulting LDPC
code is referred to as the optimized code in the rest of the paper.

• Divide Hb into c parts, each of which corresponds to a super-
code. The number c is chosen as the smallest number that
enables the local memory to accomodate all the Ln and Em,n

values of one super-code.
• If mi

b ≥ 2 and there exists degree-one nodes in the ith super-
code, perform exchange operation [10] to make the degree at
least 2 or even 0. The only exceptions are the degree-one nodes
that are critical in maintaining a certain structure in the parity
check matrix. Note that multiple passes may be requires since it
may not be possible to remove all the degree-one nodes in one
pass.

• Minimize the outer iteration number Q2 as long as the BER
performance is acceptable.

Hb=

Hb

Hb
2

1

1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0

0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1

Fig. 4. Parity check matrix of an LDPC code optimized for super-code based
decoding.

Fig. 4 shows the Hb matrix after applying the exchange operation
on the Hb matrix shown in Fig. 2. Almost all the degree-one nodes
in super-codes have been removed. There are only two degree-one
nodes left in Hb, which are purposely kept unchanged to maintain
the lower triangle shape of the Hb matrix.

1.5 2 2.5 3 3.5
10

8

10
6

10
4

10
2

E
b
/N

0
 (dB)

B
it

er
ro

r
ra

te

BER of rate 3/4 irregular LDPCs in GF(193) (optimized for super code)

Q
1
=3, 6 iter

Q
1
=3, 12 iter

Q
1
=3, 24 iter

Q
1
=6, 6 iter

Q
1
=6, 12 iter

Q
1
=6, 24 iter

Fig. 5. BER performance for different iteration numbers. The LDPC code
is the one in Fig. 4 with C = 2. The iteration number in legends are the
equivalent iteration number, i.e., Q1 ×Q2.

Next, we analyze the performance of the optimized LDPC codes.
Fig. 5 shows the effect of different iteration numbers on the BER

II 11

performance for two con gurations (Q1 = 3 and Q1 = 6). A
comparison with Fig. 3 shows that the optimized LDPC codes
for super-code based decoding converge much faster. Thus fewer
iterations are required to achieve the same performance. Further more,
the performance is no longer strongly dependent onQ2 even for small
Q2 values. This is quite different from the random case described in
Fig. 3.

1.5 2 2.5 3 3.5
10

8

10
6

10
4

10
2

E
b
/N

0
 (dB)

B
it

er
ro

r
ra

te

BER of rate 3/4 irregular LDPCs in GF(193) (C=2, Q
1
=3)

Random, 6 iter
Random, 12 iter
Random, 24 iter
Optimized, 6 iter
Optimized, 12 iter
Optimized, 24 iter

Fig. 6. BER performance of the random and optimized LDPC codes with
Q1 = 3 for different iteration number.

E. Trade-off analysis

Fig. 6 and Fig. 7 compare the BER performance of the original
and optimized codes with different iteration numbers for Q1 = 3
and Q1 = 6 respectively. In both cases, the optimized LDPC
codes can achieve the same performance as the original codes with
approximately one half the number of iterations. The number of
memory acceses is reduced by a factor of 2. The number of decoding
iterations is also reduced by a factor of 2. The overall throughput of
the decoder is (nb−mb)×Z/(Tmem+Tdec), which is approximately
inversely proportional to the number of outer iterations Q2. Thus use
of the optimized code increases the throughput of the super-code
based decoder by approximately a factor of 2.

1.5 2 2.5 3 3.5
10

8

10
6

10
4

10
2

E
b
/N

0
 (dB)

B
it

er
ro

r
ra

te

BER of rate 3/4 irregular LDPCs in GF(193) (C=2, Q
1
=6)

Random, 6 iter
Random, 12 iter
Random, 24 iter
Optimized, 6 iter
Optimized, 12 iter
Optimized, 24 iter

Fig. 7. BER performance of the random and optimized LDPC codes with
Q1 = 6 for different iteration number.

The super-code oriented optimization also reduces the local mem-
ory requirement when Scheme-II is employed. The decoder for the
LDPC in Fig. 4 requires 9.7% less local memory than the counterpart
for the one in Fig. 2. The results for memory requirement and memory
accesses are summarized in Table I. The memory requirements are
normalized to the global memory requirement of Scheme-II. Four
comparisons among the randomly generated code and the optimized
code are carried out in terms of the BER performance and number of
global memory accesses. It is clear that the optimized LDPC codes
can reduce the number of memory accesses by a factor of 2 with less
than 0.1 dB loss in BER performance (the difference is even lower
for Q1 = 6 cases).

TABLE I
COMPARISON OF THE RANDOM AND OPTIMIZED CODE IN TERMS OF

MEMORY

Item Random Optimized

Total Memory Global 76.5% 76.5%
(Scheme-I) Local 60.3% 60.3%

Total Memory Global 100% 100%
(Scheme-II) Local 60.5% 55.1%

Comparison 1 Q2 8 4
Q1 = 3 SNR for 10−5 2.77 dB 2.82 dB

Memory Accesses 100% 50%
Comparison 2 Q2 4 2
Q1 = 3 SNR for 10−5 2.91 dB 2.97 dB

Memory Accesses 50% 25%
Comparison 3 Q2 4 2
Q1 = 6 SNR for 10−5 2.98 dB 2.86 dB

Memory Accesses 50% 25%
Comparison 4 Q2 2 1
Q1 = 6 SNR for 10−5 3.40 dB 3.14 dB

Memory Accesses 25% 13%

III. CONCLUSION

In this paper, we presented an architecture-aware LDPC code
design procedure, where the architectural constraint is the size of
the local memory. The objective was to reduce the number of global
memory accesses without affecting the BER performance. We utilized
the super-code based decoding which has been shown to reduce the
memory requirement of the LDPC decoder [6], [11]. We showed
that the convergence speed of the super-code based decoding can be
greatly increased by removing the degree-one nodes in the super-
codes. We showed that the optimized code can reduce the number of
memory accesses by a factor of 2 and increase the throughput by a
factor of 2 with no degradation in BER performance.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, no. 1, pp. 21–28, Jan. 1962.

[2] S.-Y. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 dB of the Shannon
limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[3] E. Boutillon, J. Castura, and F. R.Kschischang, “Decoder- rst code
design,” in Proc. of the 2nd Intl. Symp. on Turbo Codes & Related
Topics, Sept. 2000, pp. 459–462.

[4] C. Howland and A. Blanksby, “A 220 mW 1 Gb/s 1024-bit rate-1/2 low
density parity check code decoder,” in IEEE Conf. on Custom Integrated
Circuits (CICC), May 2001, pp. 293–296.

[5] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate 1/2,
8088-b irregular low density parity check decoder,” in Proc. of Global
Telecom. Conf. (GlobeCom), vol. 1, Dec. 2003, pp. 113–117.

[6] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE
Trans. VLSI, vol. 11, no. 6, pp. 976–996, 2003.

[7] D. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE Workshop on Signal Processing
Systems (SIPS), 2004, pp. 107–112.

[8] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC coding system
design approach,” IEEE Trans. Circuits and Systems I, vol. 52, no. 4,
pp. 766–775, April 2005.

[9] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “SODA: a low-power architecture for software radio,”
in The 33rd Ann. Int. Symp. on Computer Arch. (ISCA), June 2006.

[10] Y. Zhu and C. Chakrabarti, “Architecture-aware LDPC code design for
software de ned radio,” in IEEE Workshop on Signal Processing Systems
(SIPS 2006), 2006.

[11] H. Sankar and K. R. Narayanan, “Memory-ef cient sum-product de-
coding of LDPC codes,” IEEE Trans. Commun., vol. 52, no. 8, pp.
1225–1230, Aug. 2004.

II 12

