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Abstract—Algebraic soft-decision decoding [4] is a recent break-
through in decoding of Reed-Solomon codes and signi cant decoding
gain can be achieved over conventional hard-decision decoding. Bivariate
polynomial factorization is an important step of the new decoding
algorithm and contributes to a signi cant portion of the overall decoding
latency. In this paper, a novel architecture based on direct root com-
putation is proposed to greatly reduce the factorization latency. Direct
root computation is feasible because in most practical applications of
algebraic soft-decision decoding of RS codes, suf cient decoding gain
can be achieved with a relatively low interpolation cost, which results in
bivariate polynomial of small Y-degree. Compared with existing works,
not only does our new architecture have a signi cantly smaller worst-case
decoding latency, but it is also more area ef cient.

Keywords: Reed-Solomon codes, soft-decision decoder,
factorization.

I. INTRODUCTION
Factorization is a key step in algebraic soft-decision decoding

[4] of Reed-Solomon codes. One major step of the factorization
procedure is root computation for polynomial equations. The fac-
torization architecture of [1] uses Chien search to nd roots of a
polynomial at the beginning of each iteration. This approach is very
time consuming, especially for RS codes de ned over a large nite
eld. In [7], a root-order prediction based method is proposed by
Zhang and Parhi, who observed that the orders of roots seldom change
between factorization iterations. The VLSI architecture based on this
observation can improve the average factorization latency. However,
the worst case latency of [7] is not any better than that of [1], because
the root-order prediction has a non-zero failure rate and one has to
resort to Chien search after detecting a root-order prediction failure.
Thus the root-order prediction based architecture can not be used in
applications with a stringent latency requirement.
In this paper, we present a fast factorization architecture based

on direct computation of polynomial equation roots. Direct root
computation is practically feasible only for low-degree polynomials.
Fortunately this is not a problem for most practical applications of
algebraic soft-decision decoding, where signi cant decoding gain can
be achieved with relatively low interpolation cost. Low interpolation
cost results in bivariate polynomials with Y-degree lower than 5. This
is especially true when the iterative interpolation and factorization
method [2] is applied. As shown in Figure 1 for algebraic soft-
decision decoding of an (458, 410) RS code, if factorization is
performed on judiciously selected intermediate interpolation results,
about 0.4dB decoding gain can be achieved over hard-decision
decoding at an error rate or 10−6 with an interpolation cost equal to
4580. This interpolation cost maps to a maximum Y-degree r equal
to 4 for the candidate bivariate polynomials. Actually, interpolation
cost up to 6139 can be supported with this choice of r.
Now the applicability of the direct root computation method to

bivariate polynomial factorization in practical soft-decision decoding
of RS code is established. Let us assume, throughout the rest of
this paper, that we work on a nite eld of 2p elements, i.e., F2p .
Apparently, Chien search based root computation has a latency in
the order of 2p, which is very inef cient for solving low-degree
polynomial equations in a large nite eld. As will be shown later,
the direct root computation can be implemented in hardware with a
latency of only 2p. Another advantage of using the direct root nding
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Fig. 1. Decoding Performance for (458, 410) RS code over AWGN Channel
with BPSK Modulation

method over the conventional exhaustive search method is that the
order (multiplicity) of each root can be precisely determined. This
leads to a factorization architecture where only roots of polynomial
equations need to be routed to desired hardware resources. Compared
to the architecture of [7], where large number of MUXes are used to
route both roots and polynomial coef cients, our new architecture is
more area ef cient.
The rest of the paper is organized as follows. Section II presents

direct root computation method for quadratic, cubic and quartic poly-
nomial equations de ned over F2p . Ef cient VLSI architecture for
direct root computation is also introduced there. Overall factorization
architecture is given in Section III. Section IV gives an example
of factorization architecture for decoding a (458, 410) RS codes.
Conclusions are drawn in Section V.
Throughout the rest of the paper, we assume that the readers are

familiar with the factorization algorithm presented in [6].

II. DIRECT ROOT COMPUTATION FOR POLYNOMIAL EQUATION
OF DEGREE LOWER THAN 5

A method for directly computing roots of af ne polynomials over
F2p is given in [3]. To nd roots of a non-af ne polynomial, one can
either apply transformation to convert the non-af ne polynomial to
an af ne polynomial or derive the minimum af ne multiple of the
polynomial. The second approach is usually very complicated and
may not have any advantage in complexity over exhaustive search.
Fortunately, for low degree(< 5) polynomials, only transformation is
required. In this section, method and apparatus for solving polynomial
equation of degree lower than 5 are described.
As shown in [3], nding roots of an af ne polynomial with

coef cients in F2p is equivalent to solving the following linear
equation array y M = z, where y and z are binary p-tuple row
vectors and M is a binary p-by-p matrix. The key step in solving
such linear equation array is to transform the matrix M to a reduced
triangular idempotent (RTI) form. An estimate of the number and
type of hardware units required to implement the matrix reduction is
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given below in Table I. The critical path of the entire matrix reduction
circuitry consists of 1 2:1 MUX, �log2p�+2 AND gates, �log2p�+1
OR gates, and 1 inverter.

A. The Linear, Quadratic, Cubic and Quartic Polynomials
For linear polynomial, nding its root only takes a division

operation. The quadratic polynomial f(Y ) = aY 2 + bY + c, where
a, b, c ∈ F2p , is af ne in nature. We will show later that cubic
polynomial can be handled with the same hardware resource that
transforms a general quartic polynomial to an af ne polynomial.
In the case of a quartic polynomial f(Y ) = f4Y

4+f3Y
3+f2Y

2+
f1Y + f0, if f3 �= 0, f(Y ) = 0 can be re-written as

Y 4 +
f3

f4
(Y 3 +

f2

f3
Y 2 +

f1

f3
Y +

f0

f3
) = 0.

The following “shift” transformation can be applied:
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√
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√
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√
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+
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√
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f3
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We now de ne a
def
= f3, b

def
=(

√
f1f3+f2), c

def
= f2f1

f3
+f0+( f1

f3
)2f4,

and de ne the variable substitution Z
def
= 1

Y +

√
f1
f3

. Note that the

variable substitution through shifting and reciprocation is valid only
if y =

√
f1

f3
is not a root of polynomial f(Y ), or equivalently c �= 0.

In this case, nding roots y of f(Y ) = 0 is equivalent to nding roots
z of polynomial g(Z) = cZ4 + bZ2 + aZ + f4 = 0 followed by
reciprocation and shifting operations. On the other hand, if c = 0,
then y =

√
f1

f3
is a root of the original polynomial, and this root can

not be found by solving g(Z) = 0. In this case, root y =
√

f1

f3
has

a multiplicity of at least 2. It may have a multiplicity of 3 if b = 0
and a �= 0, and it may have a multiplicity of 4 if b = 0 and a = 0.
In this case, roots other than y =

√
f1

f3
, if exist, can still be derived

from solutions of g(Z) = 0. Polynomial g(Z) = 0 is an af ne
polynomial equation and once its root z is found, it can be inverted
and shifted to obtain root y for the original degree-4 polynomial. Note
that the above transform is necessary only if f3 �= 0. Otherwise, the
polynomial f(Y ) is an af ne polynomial in the rst place.
In a brief summary, there are 2 steps involved in solving a

general degree-4 polynomial equation. In the rst step, we apply shift
and reciprocation to transform the degree-4 polynomial to an af ne
polynomial of the same degree. In the second step, we form the p×p
binary matrixM according to [3] and convert it to the RTI form. Step
1 can be implemented with the architectures shown in Figure 2. To
reduce hardware consumption, only 1 multiplier and 1 inverter is
used in Figure 2 and is time shared among various operations. The
inputs to the multiplier is controlled by the 2 4:1 MUXes and the
corresponding timing diagram is shown in Figure 3.
To optimize resource utilization, the quartic polynomial equation

solver can be con gured to solve polynomial equations of lower
degrees, too. The MUXes at the input and output of Figure 2 serves
this purpose. As will be shown in Section III, there is no need for

TABLE I
HARDWARE UNIT COUNTS FOR IMPLEMENTATION OF THE MATRIX

REDUCTION ALGORITHM
Unit Type Inverter AND OR
Count 2p 3.5p2

− 1.5p p2 + 2p − 2

Unit Type XOR MUX Register
Count p2
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Fig. 2. Architecture for transforming a general quartic polynomial to an
af ne quartic polynomial

a seperate cubic polynomial equation solver. The control signal sin

and sout are de ned as follows:

sin =

{
1, if deg Q(0, Y ) = 3;
0, otherwise. sout =

{
1, if f3 = 0;
0, otherwise.
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Fig. 3. Timing diagram for transforming a general quartic polynomial to an
af ne quartic polynomial

B. Root Order Determination
The orders of the roots found at a certain iteration level of the

factorization algorithm are key to resource allocation and scheduling
for the next iteration level. In [7], the order of each root found at
certain iteration is predicated based on the statistics collected from
simulations. Polynomial and root scheduling for succeeding iterations
are made accordingly. The predication, though accurate most of the
time, has a non-zero failure rate. Thus a mechanism to check the
correctness of the predication has to be applied. Once a prediction
fails, an exhaustive root search has to be carried out and hardware
resources need to be reallocated, which leads to longer latency for
the factorization procedure. In addition, a large number of MUXes
are needed to route polynomial coef cients to different polynomial
update engines. This issue can be completely circumvented by using
the direct root computation since the order of the roots found by
direct computation can be precisely determined. To illustrate this for
a quartic polynomial, we give the following theorem.
Theorem 1: The roots of a quartic af ne polynomial equation of

the following form X4+μ2X
2+μ1X+μ0 = 0, where μ0, μ1, μ2 ∈

F2p , have the following properties:
• The polynomial equation can have no root, 1 single root, 2
distinct roots, or 4 distinct roots in F2p .

• If the polynomial equation only has 1 root, the root can only be
of multiplicity 1 or 4.

• If the polynomial equation has 2 distinct roots, either both roots
are of multiplicity 1 or both roots have a multiplicity of 2.

Due to space limitation, a proof of the theorem is omitted. For a
general (non-af ne) polynomial f(Y ) = f4Y

4 + f3Y
3 + f2Y

2 +
f1Y + f0, a combination of the above theorem and the solutions of
the binary linear equation array can be used to infer the root orders.

III. OVERALL FACTORIZATION ARCHITECTURE
A parallel factorization architecture, where root computation and

polynomial update for all Q(X, Y ) in the same iteration level are
carried out simultaneously, is given in Figure 5. The polynomial
update can be implemented by FST (fast shift transform) proposed
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Fig. 4. Timing Diagram of Concurrent Root Computation and Fast Shift
Transfrom

in [1]. Since we only deal with bivariate polynomial of Y-degree
4, at most 4 copies of bivariate polynomial coef cient buffer and
corresponding FST engines are needed. In Figure 5, the superscript
(i) in Q

(i)
j (X, Y ), Q(i)

j (0, Y ) and γ
(i)

j,j′
indicates the iteration level,

the subscript j identi es the bivariate polynomial at the iteration
level, and the 2nd subscript j′ in γ

(i)

j,j′
is used as root index. For

example γ
(i)
1,1 refers to the 2nd root found from solving equation

Q
(i)
1 (0, Y ) at iteration level i. There are 3 types of equation solvers

in our architecture, namely, linear, quadratic and quartic equation
solvers. As mentioned in Subsection II-A, the quartic equation solver
unit can be con gured to compute roots for lower degree polynomial
equations. Though it is more area ef cient to solely use the quartic
equation solver to handle all polynomial equations of degree lower
than 5, applying the quartic polynomil equation solver to linear
polynomial is certainly an “overkill” and causes unnecessary delay.
In addition, our simulations indicate that, with a high probability,
only linear equations arise in subsequent iteration levels. Thus a
linear equation solver is used as a “slave” engine to the quartic
equation solver. By doing so, the worst-case factorization latency is
not improved, but the average factorization delay is greatly reduced.
The same argument applies to the linear equation solver bundled
with the quadratic equation solver in Figure 5. In summary, a total
of 4 linear equation solver, 1 quadratic equation solver and 1 quartic
equation solver is used in our architecture. For linear equation solver,
the RC1 architecture of [7] can be used. As one can see, the 2 extra
linear equation solvers only cost 2 F2p inverters and multipliers, 2
2:1 MUXes and 2 p-bit registers. The root condition check block
associated with the quartic equation solver takes the polynomial
coef cients (a, b and c), solutions to the binary linear equation
array, etc., as inputs and generates control signal to route the output
of the quartic equation solver to appropriate places. A similar root
condition check block is used for the quadratic equation solver as
well. In addition, the root MUX controller block is used to generate
controlling signals for the MUXes that select the roots at the input of
the 4 FST engines. In addition, the 4 root buffers store all possible
factorization output sequences.
Since only polynomial coef cients corresponding to the monomials

with zero X-degree, i.e., coef cients of Q(0, Y ), are needed for
root computation, root computation for the next iteration can start
immediately after those coef cients are available, while the rest of
the polynomial coef cients are being updated. This concurrency in
the root nding and FST processes can signi cantly reduce the
latency associated with the root- nding procedure. Actually the
latency contribution from root computation step can be completely
discounted, except for the very rst iteration and for iterations
when the polynomial update takes fewer clock cycles than the root
computation process. The concurrent RC (root computation) and FST
operations can be illustrated with the timing diagram of Figure 4. In
the gure, δ represents the number of clock cycles the FST engine
takes to produce coef cients of Q(0, Y ) for the next iteration. A total
of N factorization iterations are assumed, where initially FST takes
more clock cycles than RC per iteration and the trend is reversed in
later iterations. This effect will be explained in more detail in Section
IV.
It should be emphasized that in our new architecture, each of the 4

FST engine is tied to a polynomial coef cient buffer. Compared to the
architecture of [7], where a large number of MUXes and DeMUXes
are used in the root and polynomial scheduling and de-scheduling
blocks to route polynomial coef cients from polynomial buffers to
FST engines, our new architecture only needs to route appropriate

roots from the equation solvers to FST engines, thus signi cantly
reduces MUX consumption. At each iteration of the factorization
procedure, appropriate roots are routed to corresponding FST engines
and bivariate polynomial coef cients at the output of the FST engines
are stored back to the same buffer, where they have been read from.
Our factorization architecture utilizes a routing scheme that has the
following properties:

• At the beginning of the factorization procedure, the coef cients
of the bivariate polynomial A(X, Y ) are “broadcast” to all
coef cient buffers.

• In the ensuing iterations, roots are routed among the FST engines
based on their conditions, such as number of roots found and
the order of each root, etc.

The existence of such a routing algorithm is guaranteed by Corol-
lary 6.3 of [6] that if a root of order r is found at iteration i, the
degree of corresponding Q(0, Y ) in the ensuing iteration can not be
larger than r. The implementation of the routing algorithm is feasible
because of the precise knowledge of the root conditions from the
direct root computation method given in Section II. A switch can be
designed properly such that appropriate roots appear at the 4 output
ports of the quartic equation solver.

IV. EXAMPLE OF AN (458, 410) REED-SOLOMON CODE OVER
F210

As an illustrative example, the new factorization architecture is
applied to soft-decision decoding of an (458, 410) RS code de ned
on F210 . This code is used in some magnetic recording products.
Throughout this section, without speci c mentioning, all logic gates
are assumed to be 2-input gates.

A. Algorithm-Level Factorization Complexity
As shown in [5], the re-encoding and coordinate transformation

technique also signi cantly reduces factorization complexity for high-
rate RS codes, since at most 2Δ iterations are needed in the
factorization process, where Δ is the maximum number of errors
to be corrected in the received hard-decision vector. Otherwise,
at least k, the number of information symbols in a codeword,
iterations are required for the factorization algorithm. According to
our simulations carried out for the (458, 410) RS code in a binary
AWGN channel, as many as 32 symbol errors, 8 more than a hard-
decision decoder’s error-correcting capability, can be corrected by
the soft-decision decoder at codeword error rate of 10−6. Thus for
practical applications of soft-decision decoding to this RS code, we
may assume that Δ = 32, i.e. a total of 64 iterations are required
for the factorization procedure.

B. Hardware Complexity and Factorization Latency Estimate
In this section, we provide an area and latency estimate of our

factorization architecture. For area estimate, the gate counts of all
building blocks shown in Figure 5, except the controller blocks, are
given. The critical path of our factorization architecture is determined
by the critical path of the matrix reduction block mentioned in Section
II. In this case, there are 6 AND gates, 5 OR gates, 1 inverter and
1 MUX in the critical path, which is comparable to the critical path
in earlier designs [1][7]. Necessary pipelining is implemented for all
blocks that have longer critical paths. A summary of gate counts and
critical paths of all building blocks, except the controllers, are given
in Table II.
With appropriate pipelining, transforming a general quartic equa-

tion to an af ne quartic polynomial takes 6 clock cycles. Constructing
the matrix M needs 10 clock cycles. Matrix reduction takes 20 clock
cycles. In addition, it takes 4 clock cycles to route appropriate roots
to the output ports. Thus a total of 6+10+20+4 = 40 clock cycles
are required to solve the quartic equation and route the appropriate
roots to the FST engines.
We now present a worst-case latency estimate for the new factoriza-

tion architecture. Since, at any iteraton level, polynomial update only
needs to be applied to the coef cients required for root computation in
future iterations, the number of clock cycles required for polynomial
update decreases linearly. It can be shown that up to 7 clock cycles
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Fig. 5. Factorization architecture for bivariate polynomial of Y-Degree 4

TABLE II
GATE COUNTS AND CRITICAL PATH FOR THE BUILDING BLOCKS IN

FACTORIZATION ARCHITECTURE
Unit Area Critical Path

Converting General Quartic
Polynomial to Af ne Quartic

Polynomial

373XOR+260AND
+36OR+5INV

+90MUX+100REG
7XOR+1AND

Matrix Construction 27XOR+130REG 3XOR

Matrix Reduction
90XOR+335AND
+118OR+20INV

+209MUX+110REG

6AND+5OR
+1INV+1MUX

Linear Equation
Solver

265XOR+260AND
+36OR+5INV

+10MUX+10REG
6XOR+1AND

Quadratic Equation
Solver

127XOR+335AND
+118OR+20INV

+299MUX+240REG

6AND+5OR
+1INV+1MUX

Quartic Equation
Solver

1265XOR+1570AND
+416OR+65INV

+758MUX+450REG

6AND+5OR
+1INV+1MUX

FST Engine 567XOR+500AND
+260REG 6XOR

Equation Solver
to FST MUXes 60MUX –

total
4720XOR+4945AND
+678OR+105INV

+1157MUX+1770REG

are required for the FST engines to generate Q(0, Y ) for the next
iteration level. Thus in the worst case, polynomial update takes
64+7 = 71 clock cycles at iteration level i = 0 and requires 7 clock
cycles for the last iteration. Since root computation and routing by
the quartic equation solver takes 40 clock cycles, it can completely
overlap with polynomial update from iteration level i = 0 up until
iteration level i = 24. For the rest 38 iterations, each iteration needs
7 + 40 = 47 clock cycles as solving quartic equation dominates the
total delay. Thus the worst case clock cycle count can be estimated as
40+((7+64)+(7+40))×25/2+(7+40)×38 = 3301. If exhaustive
root search based architectures [2][7] are applied, without any overlap
between root computation and polynomial update, the worst-case
latency is at least 1024+((1024+7+64)+(1024+7+1))×63/2 =
680245 clock cycles.
Our simulations indicate that high order roots are very rare in

practice, and with a very high probability, roots of order 1 are the only
roots from the initial root computation. In this case, root computation
takes only 1 clock cycle with the linear equation solver, from iteration

level i = 2 and onwards. Thus it takes 40 + ((4 + 63) + (4 + 1))×
63/2 = 2308 clock cycles to nish factorization procedure most of
the time.

V. CONCLUSION
A novel architecture based on direct root computation is proposed

to speed up the factorization process of algebraic soft decision de-
coding of Reed-Solomon codes. Even though direct root computation
can only be applied to bivariate polynomials with Y degree lower
than 5, it is suf cient for most practical applications of algebraic
soft-decision decoding. With the new architecture, there is only
a small variation in decoding latency and the worst-case latency
is signi cantly reduced compared to prior works. Due to precise
knowledge of root orders from direct root computation, there is
no need to multiplex polynomial coef cients to multiple parallel
polynomial update (FST) engines, which can cost a large amount
of MUXes. Thus the new architecture is more area ef cient as well.
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