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ABSTRACT

Finding geometric and photometric relation among im-

ages is crucial in many computer vision tasks such as panoramic

imaging, high dynamic range imaging, stereo imaging, and

change detection. Most photometric registration algorithms

require accurate geometric registration of images. On the

other hand, geometric registration may fail when images are

not aligned photometrically. There are two contributions of

this paper: (i) A contrast invariant feature detection algorithm

is proposed. This would allow geometric registration of im-

ages without photometric registration. (ii) A photometric reg-

istration algorithm that can handle scene occlusions is pre-

sented.

Index Terms— Contrast invariant feature extraction, pho-

tometric registration

1. INTRODUCTION

Accurate geometric and photometric registration of images is

necessary in a variety of applications. For example, high dy-

namic range (HDR) imaging aims to construct scene radiance

using multiple pictures of the same scene. This requires esti-

mation of the camera response function (CRF) and exposure

ratios. If the images were not taken with a camera fixed on a

tripod, geometric registration would be required.

Significant amount of work has been done about photo-

metric registration. Debevec and Malik constructed HDR ra-

diance in addition to the CRF with known exposure durations

[1]. They defined an objective function to minimize radiance

differences, and used the second derivative of the inverse cam-

era response function for regularization. Tsin and Kanade

modeled the imaging process using statistical calibration, and

estimated both CRF and white balancing parameters jointly in

an iterative manner [2]. Mitsunga and Nayar fit a polynomial

function to CRF iteratively starting from a rough estimate of

the exposure ratios of images [3].

All these photometric registration methods require geo-

metric registration. On the other hand, geometric registration

may fail when images are not aligned photometrically. There

are three possible approaches to this problem: (i) Images are

This work was supported by the National Science Foundation under

Grant No 0528785.

first geometrically registered using an algorithm that is insen-

sitive to photometric changes. This is followed by photomet-

ric registration. (ii) Images are first photometrically registered

using an algorithm that is insensitive to geometric misalign-

ments. This is followed by geometric registration. (iii) Geo-

metric and photometric registration parameters are estimated

jointly.

There are few algorithms that can be utilized for these

approaches. In [4], an exposure-insensitive motion estima-

tion algorithm based on the Lucas-Kanade technique is pro-

posed to estimate motion vectors at each pixel. Although this

method can be used to estimate large and dense motion field,

it has the downside that it requires pre-knowledge of the CRF.

Another exposure-insensitive algorithm is proposed in [5]. It

is based on bit-matching on binary images. Although it does

not require knowing CRF in advance, the algorithm is lim-

ited to global translational motion. In [6], an IMF estimation

algorithm that does not require geometric registration is pro-

posed. It is based on the idea that histogram specification

gives the intensity mapping between two images when there

is no saturation or significant geometric misalignment. And

finally in [7], a joint geometric and photometric registration

algorithm was proposed. There, the problem is formulated as

a global parameter estimation, where the parameters are the

parameters of geometric transformation, exposure rate, and

CRF. Two potential problems associated with this approach

are (1) getting stuck at a local minima and (2) limitation of

using parametric CRF.

In this paper, we first propose a contrast invariant feature

detection algorithm. This will be used to geometrically reg-

ister images without photometric registration. Major advan-

tages of the feature based registration are (i) the ability to han-

dle large geometric variations and (ii) robustness to outliers.

Our algorithm, which we call contrast invariant feature trans-

form (CIFT), is based on obtaining a contrast signature of a

feature detector. And it can be used with any feature detec-

tor. We will show how CIFT improves the phase congruency

corner detector presented in [9].

The second contribution of the paper is an improvement

of [6]. In [6], Grossberg and Nayar proposed an algorithm to

align images photometrically without doing accurate geomet-

ric registration. Their algorithm is based on the idea that two

differently exposed images should have the same histogram
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Fig. 1. Left: Result of the Harris corner detector. Right: Re-
sult of the Phase Congruency corner detector.

after histogram equalization. The negative aspect is that it re-

quires all pixels to be visible. This is not very realistic since

there might be occlusion due to moving objects and satura-

tion due to limited dynamic range of camera. We improve

this algorithm by adding occlusion robustness. Intensity map-

ping function (IMF) is found using the expectation maximiza-

tion (EM) technique, starting with an unknown visibility map,

which assigns binary values to pixels depending on being oc-

cluded or not. IMF and visibility map are updated iteratively

leading to an intensity conversion with less error. Visibility

map eliminates occluded pixels and improve the accuracy of

IMF through iterations. It is also helpful in creating HDR im-

ages. Skipping occlusion elimination step may result in ghost

effect in HDR imaging.

2. CONTRAST INVARIANT FEATURE TRANSFORM

Maybe the most widely used corner detector is the Harris cor-

ner detector [8]. The Harris corner detector is based on the

image gradient, and is highly sensitive to contrast and illumi-

nation changes. An important feature detection algorithm that

is relatively insensitive to illumination changes is proposed in

[9]. The idea is based on the local energy model, which pos-
tulates that the Fourier components are in phase at corners

and edges. Another advantage of this approach is the feature

localization. Most gradient based algorithms apply Gaussian

smoothing to deal with noise; and smoothing can sometimes

change the location of the features critically. Figure 1 shows

results of these algorithms applied on a test image. It is clear

that the Phase Congruency method [9] is working better than

the Harris corner detector. But it is still missing corners.

Here, we propose contrast invariant feature transform (CIFT)

to improve feature detection against contrast changes. The

CIFT stretches image contrast as a function of intensity. Com-

bined with a feature detector, a “signature” of a point (as

a function of intensity) is obtained. This signature is then

used to determine feature locations. Figure 2 shows contrast

stretching functions at two center intensities. The intensity

range of the input image is scaled to 0 to 1. The contrast

stretching functions are obtained using a sigmoid function.

The center intensity is changed from 0 to 1 with small discrete

increments to obtain a set of images. The feature detector is

 

Fig. 2. Contrast stretching functions at two center intensities.
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Fig. 3. Contrast signatures at different pixels for CIFT applied
on Phase Congruency method.

applied on these images to obtain feature strength for each

pixel as a function of center intensity.

Contrast signatures for several pixels are shown in Fig-

ure 3. Those pixels are selected from various features. For

a strong (high-contrast) corner, the signature (red line) is al-

ways high. On the other hand for a smooth pixel, the signa-

ture (black line) is always low. For a strong edge, the signa-

ture (purple line) has a constant medium level response. For

a low-contrast corner, the signature (blue line) peaks around

a center contrast stretching intensity. For a T-junction corner,

the signature (green line) shows edge-like behavior for some

intensities and corner-like behavior for others.

After getting the signatures for each pixel, we can take

the maximum response (corner strength) for each pixel. This

corner strength can then be used to determine corners after

thresholding and non-maximum suppression.

3. PHOTOMETRIC REGISTRATION

3.1. Estimating IMFUsing ExpectationMaximization Tech-
nique

The expectation maximization (EM) technique is suitable for

finding maximum likelihood estimate iteratively in case model
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Fig. 4. Upper row: Corner strength and detected corners using
the Phase Congruency method. Lower row: Corner strength

and detected corners using CIFT + Phase Congruency.

depends on hidden variables. EM has been used in computer

vision applications extensively. Since an intensity mapping

function between two images is valid for only unoccluded

pixels, we need to use a visibility map to define the the visible

(unoccluded) pixels.

Let V be the visibility map between two images. The

visibility map takes a value of 1 (for unoccluded pixels) or 0

(for occluded pixels). The maximum likelihood estimate can

be found by maximizing the log-likelihood of the conditional

probability p(I1, I2|g):

ĝ = argmax
g

log p(I1, I2|g). (1)

This requires estimation of the visibility map V , which can
be incorporated into the picture using the following marginal-

ization:

p (I1, I2|g) =
∫

p (I1, I2, V |g) dV . (2)

Since V is binary for a pixel, equation (1) can be written

as

ĝ = argmax
g

log
∑
V

p(I1, I2, V |g), (3)

where the summation is over the pixels for which the visibility

map is 1.

EM aims to find the maximum likelihood estimate of both

the visibility map and IMF. At the start of algorithm, both g
and V are unknown; and the algorithm alternates between ex-

pectation (E) and maximization (M ) steps until convergence.

At the kth iteration, the steps are as follows.

• Step E: We want to find g which maximizes likelihood
in equation (3), but V is unknown initially. So, instead,

we use the expected value V given the images and the

current estimate of g. The followingQ function is to be

maximized:

Q(g, g[k]) ≡
∑
V

p(V |I1, I2, g[k]) log p(I1, I2, V |g).
(4)

• Step M: The new IMF is found as follows:

g[k+1] = argmax
g

Q(g; g[k]). (5)

3.2. Initial Estimation of IMF

EM algorithm requires an initial estimate for IMF. Histogram-

based approach in [6] is a good candidate for initializing IMF

since it does not require geometric registration. Let H1(·)
and H2(·) be the histogram equalization functions calculated

from I1 and I2, respectively. When there is no saturation

or occlusion, histogram-equalized images must be identical:

H2(I2) = H1(I1), fromwhich we can write I2 = H2
−1(H1(I1)).

As a result, the initial estimate for IMF is given as

g[0](·) = H2
−1(H1(·)). (6)

3.3. Estimating Visibility Map

The visibility map is a binary, and the probability p(V |I1, I2, g[k])
will be either 1 or 0 based on the difference |g[k](I1(x)) −
I2(x)|. Using a predetermined threshold Tk, and denoting x
as the spatial location, visibility map value at location x at the
kth iteration is found by

V (x, k) =
{

0 , if |g[k](I1(x)) − I2(x)| > Tk
1 , else

(7)

The threshold Tk could in general be a function of iteration.
Intuitively, we may start with a large threshold, therefore tak-

ing a lot pixels as visible. As we progress with the iterations,

we may reduce the threshold value to have a more and more

accurate estimation of visible/invisible pixels. As the visibil-

ity map becomes more accurate, the IMF will also become

more accurate.

3.4. Estimating IMF

To complete the algorithmwe also need to define p (I1, I2, V |g).
Let Hi,V be the histogram equalization function (of the ith
image) found from the visible pixels only. We then use a
Gaussian model to define p (I1, I2, V |g):

p (I1, I2, V |g) ∝ exp
�

−‖(g(I1) − H−1
2,V H1,V (I1))‖2/2σ2

�
,

(8)

where σ2 is the noise variance. Assuming independence

among different spatial locations, the IMF estimate at kth it-
eration is

g[k](I1) = H−1
2,VH1,V (I1). (9)
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Fig. 5. (a)-(b) Input images. (c) Features extracted using

CIFT + Phase Congruency. (d) Inliers found after RANSAC.

(e) Residual after geometric and photometric registration.

4. EXPERIMENTAL RESULTS

Here, we provide an example to show how iterative refine-

ment of IMF improves the accuracy of intensity conversion

between differently exposed images. We captured two im-

ages with exposure times of 1/200 seconds and 1/60 seconds.

These images are shown in Figure 5. There is also a person

moving in the scene. We first applied feature extraction to

these images using the CIFT + Phase Congruency method.

This is followed by feature matching and outlier rejection

with RANSAC. The extracted features are shown in figures

5(c) and (d). The inliers after the RANSAC iterations are

shown in Figure 5(e). Figure 5(f) shows the residual image

after geometric and photometric registration. In Figure 6(a),

the change in the mean square error of the residual (outside

the estimated occlusion map) is shown as a function of iter-

ations. Figure 6(b) shows the initial and final intensity map-

ping functions.

5. CONCLUSION

In this paper we presented a contrast invariant feature detec-

tion algorithm. The algorithm can be used with any feature

detection technique to improve robustness against illumina-

tion changes. This would allow geometric registration of im-

ages without photometric registration. We also presented a

photometric registration algorithm that can handle scene oc-

clusions. The algorithm is based on the expectation maxi-

mization technique. We provided examples to demonstrate

these algorithms. In the future, we plan to combine the CIFT

algorithm with affine invariant region descriptors to achieve

contrast and affine invariance together.
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