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ABSTRACT

In this paper we analyze and demonstrate the subspace
generalization power of the kernel correlation feature
analysis (KCFA) method for producing compact low
dimensional subspace that has good representation ability
to work on unseen, untrained datasets. Examining the
portability of an algorithm across different datasets is an
important practical aspect of face recognition applications
where the technology cannot be dataset-dependant in real-
world practical applications. In most face recognition
literature, algorithms are demonstrated on datasets by
training on some part of the dataset and testing on the
remainder. In general, the training and testing data have the
same people but different capture sessions so essentially,
some of the expected variation and people are modeled in
the training set. In this paper we describe how we
efficiently build a compact feature space using kernel
correlation filter analysis on the generic training set of the
FRGC dataset, and test the built subspace on other well-
known face datasets. We show that the feature subspace
produced by KCFA has good representation and
discrimination to unseen datasets and produces good
verification and identification rates compared to other
subspace methods such as PCA. Its efficiency, lower
dimensionality (the KCFA is only a 222 dimensional
subspace) and discriminative power make it more practical
and powerful than PCA as a powerful lower dimensionality
reduction method for modeling faces and facial variations.

Index Terms— Reduced Feature Subspace, Kernel
Correlation Filters, FRGC, PIE, FERET

1. INTRODUCTION

Face recognition continues to be a very popular and active
research area due to the increasing demand for access
control and surveillance watch-list applications. This
research has been made possible by the numerous datasets
of face pictures gathered over the years and made available
to the face recognition community [1]. Most of these
datasets were designed with a specific purpose in mind, in
order to advance and test the robustness of algorithms to
specific challenges and variations, such as head pose,
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expression, lighting conditions, surrounding settings and
camera angle. However, the process of developing an
algorithm based on a particular dataset makes it inherently
dependent on it, no matter how large and diversified the
given dataset is. Moreover, overtraining becomes an issue,
in a way that an algorithm that performs very well on a
given dataset is not guaranteed to perform well on others.
In this paper we study how our Kernel Correlation Feature
Analysis (KCFA) algorithm performs when applied across
different face databases. We trained on the FRGCv2
generic set to extract a feature subspace of 222 dimensions
only. When tested on the FRGC Experiment 4 (the hardest
experiment), the verification rate of KCFA exceeds 82% at
0.1% FAR, while Principal Component Analysis (PCA)
[2], the baseline algorithm in FRGC experiments, yields a
verification rate of 12% at 0.1 % FAR. We demonstrate
that this performance gain carries over to other unseen
datasets, proving that our low dimensional feature subspace
we built from FRGC generalizes to other unseen datasets
better than traditional subspace modeling such as PCA.

2. KERNEL CORRELATION FEATURE
ANALYSIS

The traditional face techniques based on dimensionality
reduction such as PCA [2], LDA [3] and variants [4] have
been proved to under-perform in face recognition
application, due to the highly nonlinear nature of face
distortions. Correlation filters, with advantages such as
noise tolerance, shift-invariance and closed-form solutions
to optimization criteria represent a better technique.

2.1 Correlation Filter Theory

The basic correlation filter is the synthetic discriminate
function (SDF) [5], a linear combination of training images
that is designed to produce a correlation output with a preset
value at the origin. An evolution of the SDF is the minimum
average correlation energy (MACE) [6] [10] filter. It is
designed to minimize the average correlation plane energy
resulting from the training images, while constraining the
correlation peak value at the origin to pre-specified values.
Correlation outputs from MACE filters typically exhibit
sharp peaks, making the peak detection and location
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relatively easy and robust. The closed form expression for
the vectorized MACE filter h is

h= D-IX(X+D'1X)'1u (1)
where X is a d’xN complex valued matrix. Here N is the
number of training images and @” is the number of pixels in
each image. Each column contains the lexicographically re-
ordered version of the 2-D Fourier transform of a certain
training image. D is a d’xd” diagonal matrix containing the
average power spectrum of the training images along its
diagonal and u is a column vector containing N pre-
specified correlation values at the origin.
In the case where the images have been corrupted by
additive zero-mean stationary noise with power spectral
density represented by C (a diagonal matrix whose
diagonal elements represent the noise power spectral
density at a given frequency), we can trade off some peak
sharpness for some noise tolerance using the optimal
trade-off filter (OTF) [7] given by:

h=P'X(X'P'X)"u )

Where P=aD+./(1-a*)C and 0<a<1

These correlation filters have been shown to exhibit
robustness to illumination variations and other distortions
[5] [9]. Note that in the formulation of the correlation filters
mentioned above, X can include impostor training images and
u can set their corresponding constraint values to 0. Our
class-dependent feature analysis (CFA) makes use of the
generic dataset to build a set of filters as we explain next.
This way we achieve a novel dimensionality reduction far
better than the traditional PCA.

2.2 Class Dependent Feature Analysis (CFA)

Our proposed method uses a set of MACE filters to extract
features from the training set. For every subject in the
training set, we build a MACE filter to end up with as
many different filters as there are individuals in the training
set. Each filter takes as input all of the training face images
available. As noted earlier, the u vector in equations (1)
and (2) presets the value of the correlation peak. In
particular, for the “authentic” class to whom the MACE
filter belongs, the u values of all pictures belonging to this
authentic class are set to 1. While for all other images
belonging to the remaining “impostor” classes, we set the
equivalent u values to 0. This ensures that the filter finds
no correlation between subjects belonging to different
classes. Therefore, the proposed CFA method is a function
of the number of classes and not the total number of
training images, which is beneficial for dimensionality
reduction in face recognition applications.

Once the design process is completed the testing feature
extraction is the next step where we are given a test image

y, we represent it by the correlation of that test image with
the N MACE filters:

c= HTy = [hmace-l hmace-Z o hmace-n ]Ty (3)

hppace-; 15 @ filter that is trained to give a small correlation

output (close to 0) for all classes except for class-i as

shown in Figure 1. Then each input image y is projected

onto those basis vectors to yield an N-dimensional

correlation feature vector ¢, where N is the number of

training subjects.
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Figure 1: The CFA algorithm; in this figure, we are building a

MACE filter for class 2. Note that u corresponding to all other
classes is set to 0. We are testing pictures y; and y,. The filter
response of y; and hy,ce.o can be distinctive to that of'y, and

hmace-Z
2.3 Kernel Correlation Filters

The linear subspace approach may not perform well,
especially if the training data is not well representative, due
to the nonlinear distortions in human face appearance
variations. To overcome this hurdle, our algorithm is
extended to represent nonlinear features efficiently by
mapping onto a higher dimensional feature space. This will
allow us to exploit higher-order correlations in these kernel
spaces. Moreover, to keep the computation tractable even
with the increase in dimensionality, we revert to the kernel
trick methods for improved efficiency. They enable us to
obtain the inner products in the higher-dimensional feature
space without actually having to form the higher-
dimensional feature mappings. Examples are Kernel
Eigenfaces and Kernel Fisherfaces [12]. The mapping
function can be denoted as follows.

®:R"Y > F “4)
Kernel functions defined by K (x,y) =< ®(x), ®(y) > can be
used without having to form the mapping as long as kernels
form an inner-product and satisfy Mercer’ theorem to
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ensure that we are still working in a Hilbert inner-product
space. In this paper we use a Radial Basis Function kernel
whose equation is given by:
K(a,b) = exp(—(a-b)’/207) (5)
Now we can apply the kernel trick to yield the Kernel
Correlation Filter as follows below:
D(y)- @(h) = (P(y) X" N@(X) P(X") 'u
=K(y,x")K(x";, X'j)ilu
We can use these Kernel filters in the same CFA

framework to extract N dimensional kernel feature vectors,
which we refer to as the KCFA method.

(6)

3. DATASETS

To apply this algorithm in this paper, we chose the FRGC
generic set for training because it contains the most face
images with the most variations to date. We tested on the
biggest other databases available, namely PIE, AR and
FERET. Note that we compensate for the illumination
variations by preprocessing all of our training and testing
pictures [13].

3.1 FRGC

The Face Recognition Grand Challenge (FRGC) database
contains over 36000 pictures [14]. In this paper, we use the
“generic dataset” which contains 222 people and a total of
12,776 training facial images. This training set features
both indoor/controlled and outdoor/uncontrolled pictures
with harsh illumination variations (Figure 2). Note that
none of the people in the FRGC dataset are present in AR,
PIE or FERET.

3.2 Testing Datasets (PIE, AR, FERET)
The CMU Pose, Illumination and Expression (PIE)
database [15] contains over 40,000 facial images of 68
different subjects at different poses, with different
illumination variations and shadow artifacts. In this paper,
we use two different subsets of PIE; as gallery set, we use
PIE “light”, which features illumination variations while
ceiling lights are on, and as probe set, we use PIE “no
light”, which contains the same subjects with significantly
harsher illumination variations due to the fact that ceiling
lights were turned off during capture. PIE “light” has 1584
images while PIE “no light” contains 1386 images.

’ r’ 3 “ > ]

Figure 2: FRGC uncontrolled images before and after
preprocessing for illumination variation

The Face Recognition Technology [FERET] dataset [16],
one of the most widely used benchmark databases, features
facial images in a semi-controlled environment. The data
we used for testing contains 599 classes and a total of 1708
images. Similarly, the AR database [17] contains face
images of 135 subjects captured over two sessions. For this
paper, we’re using a subset of 1771 controlled face images
that contains no visual obstructions such as sunglasses and
scarves.

4. EXPERIMENTAL RESULTS

As detailed above, we built our lower dimensional feature
subspace on the FRGC generic training set and project
images of other datasets on this reduced dimensional
feature space. We compare our KCFA subspace to using
actual raw data from the testing dataset images themselves
using nearest neighbor distance classifier (with cosine
distance measure). We also compare to it to PCA using
1000 and 222 eigenfaces trained on the same FRGC
generic set. Normalized cosine distance was the metric
used to measure similarity between two images.

Table 1 shows the rank 1 identification rates and table 2 presents the
total accept rates taken at 0.1% FAR.

5 Rank 1 Identification Rates
8 KCFA Norm PCA PCA
< 222 correlation 1000 222
e f . .
eatures eigenfaces | eigenfaces
PIE sets 100 100 99.64 99.57
FERET 89.64 33.49 63.93 60.19
ARDB 93.62 78.15 87.80 84.87
Table 2: Verification Rates (VR) at 0.1% FAR
5 Verification Rates @ 0% False Acceptance Rate
3 KCFA Norm PCA PCA
S 222 correlation 1000 222
A f . .
eatures eigenfaces eigenfaces
PIE sets 56.17 02.30 03.93 04.25
FERET 73.14 30.86 26.91 26.98
ARDB 46.59 20.15 35.08 33.29
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Figure 4: FERET VR vs. FAR using KCFA, Normalized Correlation,
PCA 1000 and 222 eigenfaces.
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Figures 4 above and 5 below depict the ROC curves for the
PIE and FERET databases using the four methods
described above.
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Figure 5: PIE light vs. nolight: VR vs. FAR using KCFA, normalized
Correlation, and PCA (1000 and 222 eigenfaces).

Note that the 222 number corresponds to the total number
of generic training subjects. By excluding some of these
subjects, starting with the ones with the fewest pictures, we
can further reduce the size of our feature subspace. Figure
6 below depicts how rank-1 identification rates decay with
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Figure 6: Identification Rates for the different experiments with varying
number of KCFA features.

5. CONCLUSIONS

Linear approaches such as PCA, LDA, and CFA may not
be suitable to represent or discriminate facial features
efficiently. We showed that the low dimensional feature
subspace produced by KCFA has good representation and
discrimination and generalization to unseen datasets and
produces better verification and identification rates on PIE,
FERET and AR dataset compared to PCA and also
outperforms using raw gallery data The proposed approach
is a very efficient dimensionality reduction method
reducing the representation of the 12,776 FRGC generic
facial images to a KCFA feature subspace of size 222. This
allows for efficient transmission on low bandwidth
connections such as cell phones and PDA’s and permits for

very fast matching and low search times in large databases
due to the small feature size representation.
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