
AN ARTIFICIAL NEURAL NETWORK FOR QUALITY ASSESSMENT IN WIRELESS
IMAGING BASED ON EXTRACTION OF STRUCTURAL INFORMATION

Ulrich Engelke and Hans-Jürgen Zepernick

Blekinge Institute of Technology
PO Box 520, SE-372 25 Ronneby, Sweden

E-mail: {ulrich.engelke, hans-jurgen.zepernick}@bth.se

ABSTRACT

In digital transmission, images may undergo quality degra-
dation due to lossy compression and error-prone channels.
Ef cient measurement tools are needed to quantify induced
distortions and to predict their impact on perceived quality.
In this paper, an arti cial neural network (ANN) is proposed
for perceptual image quality assessment. The quality predic-
tion is based on structural image features such as blocking,
blur, image activity, and intensity masking. Training and test-
ing of the ANN is performed with reference to subjective ex-
periments and the obtained mean opinion scores (MOS). It is
shown that the proposed ANN is capable of predicting MOS
over a wide range of image distortions. This applies to both
cases, when reference information about the structure of the
original image is available to the ANN but also in absence
of this knowledge. The considered ANN would therefore be
well suited for combination with link adaption techniques.

Index Terms— Arti cial neural network, image quality
assessment, feature extraction, communication systems.

1. INTRODUCTION

The deployment of third-generation mobile networks has led
to a higher adoption of digital multimedia applications such
as audio, image, and video. However, the data suffers from
impairments through both lossy source encoding and trans-
mission over error-prone channels, eventually resulting in a
degradation of quality. Combating these losses requires them
to be measured accurately. Traditionally, this has been done
with measures like the bit error rate (BER). It has been shown
that this type of measures does not necessarily correlate well
with the quality as perceived by humans. Therefore, user-
oriented objective quality evaluation, taking into account hu-
man sensitivity to certain distortions, has received increased
attention.

Two approaches have been generally followed in the de-
sign of objective image quality metrics which in [1] are re-
ferred to as the psychophysical approach and the engineering
approach. Metrics following the former approach are mainly
based on incorporation of various aspects of the human visual

system (HVS). Metrics based on the latter approach utilize
image analysis and feature extraction algorithms to perform
the quality prediction. These metrics can then be related to
human perception by performing subjective experiments.

The most widely used image quality measure is the peak
signal-to-noise ratio (PSNR) because of its simplicity and abil-
ity to measure distortions over a wide range. However, PSNR
is unable to accurately quantify structural distortions and does
not account for non-linearities and saturation effects in hu-
man vision. Hence, its prediction performance often does not
agree with the quality as perceived by human observers. Also,
PSNR as a full-reference (FR) metric requires the original im-
age being available for quality prediction. This is generally
not the case in a communication system where the receiver
does not have access to the original image. In such cases no-
reference (NR) or reduced-reference (RR) metrics are prefer-
ably used. The former utilizes solely the distorted image for
quality evaluation whereas the latter uses additionally a set of
extracted features from the reference image (see Fig. 1).

In this paper, image quality assessment is based on feature
extraction algorithms accounting for blocking, blur, image ac-
tivity and intensity masking. This approach is supported by
the fact that the HVS is highly adapted to the extraction of
structural information [2]. The goal is then to use the feature
measures along with mean opinion scores (MOS) obtained
in subjective experiments to train and test an arti cial neural
network (ANN) for image quality prediction. Link adaptation
techniques in wireless multimedia systems may bene t from
such an ANN.

The paper is organized as follows. In Section 2, the im-
age distortion process, subjective experiments, and feature ex-
traction are described. Section 3 discusses the ANN design,
training, and testing. In Section 4, an evaluation of the ANN
performance is presented. Section 5 concludes the paper.

2. SUBJECTIVE & OBJECTIVE IMAGE ANALYSIS

2.1. Image Distortion Process

A set Iref of L = 7 reference monochrome images in Joint
Photographic Experts Group (JPEG) format was chosen to ac-
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Fig. 1. Network scenario with ANN as no-reference (solid line) or reduced-reference (dashed line) image quality predictor.

count for different textures and complexity. A simple simula-
tion model of a wireless system was used in order to generate
a wide range of image distortions. The model comprised of a
Rayleigh fading channel with additive white Gaussian noise, a
(31,21)Bose-Chaudhuri-Hocquenghemcode for error protec-
tion and binary phase shift keying as modulation technique.

2.2. Subjective Experiments

The impact of different image distortions on human percep-
tion is based on data from two subjective experiments. These
were conducted according to ITU-R Rec. BT.500-11 [3] with
each experiment involving 30 non-expert observers. The rst
experiment took place at the Western Australian Telecommu-
nication Research Institute in Perth, Australia. The test per-
sons were shown the distorted images from a set I1 of size
J = 40 along with their references. The 30 votes for each
distorted image were accumulated to built the MOS vector
s1 =[s(1)

j ]1×J with s
(1)
j ∈ [0, 100] denoting the MOS value of

the jth image in I1. The second experiment was conducted
at the Blekinge Institute of Technology in Ronneby, Sweden.
Accordingly, 30 test persons were presented the images from
a different set I2 of size J = 40 resulting in a MOS vector
s2 = [s(2)

j ]1×J with the MOS value of the j th image in I2

given by s
(2)
j ∈ [0, 100]. The test procedure and results of

both experiments are extensively reported in [4].

2.3. Feature Extraction

To obtain information about structural degradation in the im-
ages that can subsequently be mapped to perceptual image
quality, we extracted the following ve features for each of
the images in the three sets Iref , I1 and I2:

f̃1 � Blocking (Wang et al. [5])

f̃2 � Blur (Marzilliano et al. [6])

f̃3 � Edge-based image activity (Saha et al. [7])

f̃4 � Gradient-based image activity (Saha et al. [7])

f̃5 � Intensity masking

Accordingly, three matrices containing these feature mea-
sures may be de ned as

F̃ref = [f̃ (ref)
i,l ]I×L, F̃1 = [f̃ (1)

i,j ]I×J , F̃2 = [f̃ (2)
i,j ]I×J (1)

where f̃
(ref)
i,l , f̃

(1)
i,j , andf̃

(2)
i,j , respectively, denote the ith fea-

ture measure of the lth and jth image in Iref , I1, and I2.
Also, the dimensions of these matrices relate to the number
of features, I = 5, the number of reference images, L = 7,
and the number of test images, J = 40. Given the matrices of
(1), a partitioned matrix containing the features of the total of
K = L + 2J = 87 images may be introduced as

F̃tot = [f̃ (tot)
i,k ]I×K = [F̃ref |F̃1|F̃2] (2)

In order to obtain a de ned and nite feature space, the
feature measures were normalized into an interval using an
extreme value normalization [8]

f
(tot)
i,k =

f̃
(tot)
i,k − min

k=1,···,K
{f̃ (tot)

i,k }
δi

, i = 1, · · ·, I (3)

where the denominator is computed as

δi = max
k=1,··· ,K

{f̃ (tot)
i,k } − min

k=1,··· ,K
{f̃ (tot)

i,k } (4)

and as a consequence, we have ∀i, k : 0 ≤ f
(tot)
i,k ≤ 1.

In the case of an RR scenario, the absolute difference be-
tween the normalized features of the distorted and reference
image may be used to quantify changes in image quality as

Δf
(1)
i,j = |f (1)

i,j − f
(ref)
i,l | and Δf

(2)
i,j = |f (2)

i,j − f
(ref)
i,l | (5)

to build the elements of the following delta-feature matrices

ΔF1 = [Δf
(1)
i,j ]I×J and ΔF2 = [Δf

(2)
i,j ]I×J (6)

3. THE NEURAL NETWORK APPROACH

In view of the results obtained from the subjective experi-
ments and the related structural image information as reported
above, the overall aim is to design an ANN that can assess
and quantify image quality in terms of predicted MOS. Ac-
cordingly, the favorable ANN needs to be trained to nd as-
sociations between input signals (image features) and a cor-
responding desired response (predicted MOS). Clearly, the
trained neural network should not only be able to map known
inputs to known outputs but should also be able to associate
unknown inputs to meaningful outputs. In the sequel, we will
present the considered feed-forward network architecture and
describe its training and testing.
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Fig. 2. Fully-connected two-layer neural network structure.

3.1. Feed-forward Network Architecture

In general, a feed-forwardANN consists of multiple layers, in
particular an input layer, an output layer, and one or several
hidden layers. Each of the layers contains various amounts of
neurons. These are processing units composed of a summa-
tion part and a transfer function. In a fully-connected network
all neurons in a hidden layer have a weighted interconnection
to the neurons in the previous and successive layer.

A fully-connected two-layer network architecturewith M 1

and M2 neurons in the rst and second layer, respectively, is
illustrated in Fig. 2. Here, fi denotes the ith feature at the net-
work input. The interconnection weights, including biases, to
the neurons are stored in the matrices

W[1] = [w[1]
m1,i]M1×(I+1), W[2] = [w[2]

m2,m1
]M2×(M1+1) (7)

The activation functions in the rst and second layer are given
as G and H , respectively. The inputs to the activation func-
tions are denoted as u[n] and the outputs as o[n]. In general,
the superscripts (·)[n] denote the nth layer in the network.

The choice of a suitable architecture (number of layers,
neurons per layer, activation functions) is crucial to the per-
formance of an ANN for an intended application. Neural
networks of too high complexity tend to easily over t which
means that they function well on the training set but show
weak performance on unknown input data. On the other hand,
networks of too low complexitymight result in large errors for
both training and generalization. However, it is well known
that any continuous function can be approximated suf ciently
well by a two-layer network architecture given a non-linear,
differentiable transfer function and suf cient neurons in the
rst layer and a linear transfer function in the second layer [9].

In view of this nding, we designed a fully-connected two-
layer feed-forward network containing one hidden and one
output layer. The differentiable bipolar sigmoid function was
chosen as activation function g for all neurons in the hidden
layer. A linear activation function h was used for the sin-
gle output neuron. There is no strict design rule regarding the
number of neurons in the hidden layer but in our case a choice
of 8 neurons has provided best performance.

3.2. Network Training and Testing

Let us refer to the columns of the matrices F1 and F2 con-
taining the features of the distorted images of sets I1 and I2,
respectively, as feature vectors f . Similarly, let us refer to the
columns of the delta-feature matrices ΔF1 and ΔF2 as delta-
feature vectors Δf . Accordingly, we have 80 feature vectors
f and 80 delta-feature vectors Δf available as network inputs.
It should be noted that the feature vectors are used for NR
image assessment while the delta-feature vectors support RR
image assessment. The related MOS values representing the
desired network responses are contained in the MOS vectors
s1 and s2 deduced from the subjective experiments.

To train the network and also test its ability to generalize
unknown inputs we need to split the available feature vectors
into two subsets, a training and a test set. The size of the
training subset has been chosen as P = 60 with 30 feature
vectors randomly selected from each of F1 and F2. Similarly,
this has been done with the delta-features ΔF1 and ΔF2. The
selection was constrained such that the training set contains
the minima and maxima of each of the 5 features and delta-
features. Therewith, the networks generalization to new input
data is eased to an interpolation problem rather than extrapo-
lation to unknown data which might exceed the training data.
The training sequences for the NR and RR image quality as-
sessment along with the related MOS are given by

Ftr =[f (tr)
i,p ]I×P , ΔFtr =[Δf

(tr)
i,p ]I×P , str =[s(tr)

p ]1×P (8)

The remaining Q = 20 feature, delta-feature, and MOS
vectors, respectively, were used to obtain the test sequences:

Fts =[f (ts)
i,q ]I×Q, ΔFts =[Δf

(ts)
i,q ]I×Q, sts =[s(ts)

q ]1×Q (9)

Due to the relatively small set of training sequences, the
networks capability to generalize unknown data is restricted.
Therefore, special methods have to be used to improve the
generalization of the network. The most widely used tech-
niques are early stopping and Bayesian regularization. The
former method requires the data to be divided into three sub-
sets, a training, validation, and test set. On the other hand,
Bayesian regularization only needs a training and a test set
and is therefore preferably used on smaller data sets. We used
the Levenberg-Marquardt algorithm together with Bayesian
regularization to train our network. To get the best perfor-
mance with Bayesian regularization during training we scaled
both network inputs and targets to fall in the range [−1, 1].
In a post-processing step the MOS have been reverted to fall
into their original interval [0, 100]. In supervised training the
output of the second layer o[2] is compared to the MOS, the
desired response s, to establish the error e = s − o [2] which
is used to update the network weights W [1] and W[2]. The
trained network is then applied with xed weights and biased
input fb = [fT |1]T providing the predicted MOS, p, which is
calculated as

p = o[2] = H
[
W[2] ·G[

W[1]fb
]]

(10)
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Fig. 3. Linear curve tting for NR approach: (a) network
training with 60 images, (b) network testing with 20 images.
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Fig. 4. Linear curve tting for RR approach: (a) network
training with 60 images, (b) network testing with 20 images.

4. NETWORK PERFORMANCE EVALUATION

A linear regression between the predicted MOS, p, at the net-
work output and the MOS, s, obtained from the subjective
experiments has been performed. The relationship between
them can be expressed as s = α p+β, where α is called the
slope and β the y-intercept of the regression function. For a
perfect t where predicted MOS, p, equals MOS, s, the slope
α would be 1 and the y-intercept β would be 0. The results
of the curve tting for the training and test sets are shown in
Fig. 3 and Fig. 4, respectively, for NR and RR assessment.

To quantify the accuracy by which the designed ANN pre-
dicts MOS has been determined using the Pearson linear cor-
relation coef cient r. The results are summarized in Table 1.
The correlation coef cients rtr and rts and the tting curve
parameters α and β demonstrate a very good prediction per-
formance of the network for both the training (tr) and testing
(ts) processes. This shows the networks strong ability to gen-
eralize to unknown inputs. It is also noted that the proposed
ANN outperforms the previously reported results in [4] which
relate to RR image quality evaluation based on weighted fea-
ture difference values with a correlation value of 0.869.

It can also be observed from the table that the correla-
tion values for NR and RR assessment are very similar. This
suggests that information about the changes in the structural
information is not necessarily needed to enhance prediction
performance of the ANN as compared to the feature values
of the distorted image. Thus, one may deploy the ANN as an
NR image quality predictor to save the feature extraction on

Table 1. Prediction performance.

rtr αtr βtr rts αts βts

NR 0.933 1.02 -1.011 0.931 0.973 4.686

RR 0.932 1.022 -1.018 0.932 1.137 -3.35

the reference image as well as transmission of these features
over an ancillary channel.

5. CONCLUSIONS

In this paper, we designed an ANN for perceptual image qual-
ity assessment considering both NR and RR metrics. The
feature-based ANN design takes advantage of structural im-
age information. The network was trained and tested using
MOS obtained in subjective experiments. An analysis of the
prediction performance of the ANN revealed strong ability of
the network to associate structural features to perceived image
quality in terms of predicted MOS. This applies to both, NR
and RR quality assessment. As such, the ANN may be com-
bined with link adaption techniques that can adapt to system
dynamics as observed in wireless communications.
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