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ABSTRACT 

 
Curvature scale-space (CSS) corner detectors look for curvature 
maxima or inflection points on planar curves. They use arc-length 
parameterized curvature. Therefore, they are not robust to affine 
transformations since the arc-length of a curve is not preserved 
under affine transformations. However, the affine-length of a curve 
is relatively invariant to affine transformations. This paper presents 
an improved CSS corner detector by applying the affine-length 
parameterized curvature to the CSS corner detection technique. A 
thorough robustness study has been carried out on a large database 
considering a wide range of affine transformations. 
 

Index Terms— Corner detection, curvature scale-space 
 

1. INTRODUCTION 
 
Corners which are visually significant features can be used for 
geometric distortion corrections in images [1], stereo matching, 
and object recognition. A large number of corner and interest point 
detectors have been proposed in the literature [2-6]. Mokhtarian 
and Mohanna [7] classified them into two groups: intensity-based 
[2-3] and contour-based [4-6] methods. Intensity-based methods 
estimate a measure which is intended to indicate the presence of a 
corner directly from the image grey values. In contrast, contour-
based methods first recover planar curves using some edge 
detector and then search for the curvature maxima along those 
curves. In fact, both types of methods carry out some form of edge 
detection implicitly (intensity-based) or explicitly (contour-based). 
However, implicit edge detection affects the result of corner 
detection [5]. Corner detectors can also be divided into two: 
single-scale detectors [2] and multi-scale detectors [3-6]. Single-
scale detectors work well if the image has similar size features, but 
ineffective otherwise; because either fine or coarse scale features 
are poorly detected, but images may contain both kinds of features. 
To improve the effectiveness of corner detection, multi-scale 
corner detectors have been proposed. They build the three-
dimensional space through smoothing the image or edge contours 
using the Gaussian kernel. 

This paper presents an improved curvature scale-space (CSS) 
corner detector which is affine resilient (ARCSS detector). The 
original CSS detector and its enhanced version [5-6] parameterize 
curves with the arc-length which is not affine invariant. Instead, 
the proposed corner detector parameterizes curves with the affine-
length which is relatively invariant to affine transformations. 
Moreover, the existing CSS detectors do not use proper evaluation 
metrics for performance comparisons. We modify an evaluation 
metric for the purpose of fair comparisons. Experimental results 
show that the proposed ARCSS corner detector offers better 
performance in terms of both repeatability and localization. 

In literature, affine-length has been used for affine invariant 
shape recognition [8]. The proposed corner detector is different 
from [8] due to two reasons. First, [8] uses higher order derivatives 
of up to third order. In digital implementation, precise 
approximation of higher order derivatives is a difficult task and it 
often causes instability and involves more errors. We will show by 
mathematical derivation that the affine-length parameterized 
curvature involves up to second-order derivatives. Second, in 
shape recognition, it is assumed that the object always maintains a 
closed contour even though its shape and size may be changed due 
to affine transformations. Consequently, they match shapes using 
the CSS image [8] and do not explicitly use corner positions. 
However, any corner detector explicitly obtains corner positions. 

 
2. CURVATURE SCALE-SPACE CORNER DETECTORS 

 
The CSS corner detectors, in general, extract planar curves from 
the image using some edge detector and parameterize each curve 
using the arc-length. Then they smooth each curve in CSS using 
the Gaussian kernel with different scales in order to remove noise. 
Thereafter, they calculate absolute curvature on each point of the 
curve at either all scales or one or more specific scales. Then they 
look for curvature maxima points as corners based on some 
constraints. If corners are detected at all scales, those which 
survive in most of the scales are finalized. If corners are detected 
at some specific scales, they are tracked down to the finest scale in 
order to improve localization. 

For a given parametric vector equation of a planar curve 
(t) = (x(t), y(t)), the curvature is defined in [5] as: 
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When the curve is parameterized by s, it is shown in [4] that  
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Therefore, the curvature on the arc-length parameterized curve in 
CSS is given by according to (1) as 
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where according to the property of the Gaussian convolution that 
states that the convolution and derivatives are commutative 
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where g(. , ) denotes the Gaussian kernel of width (scale)  and * 
denotes the convolution.  

The first CSS corner detector [4] investigates curve behaviors 
in the scale-space and transforms it into a tree. Then a coarse-to-
fine tree parsing technique, which is computationally demanding, 
is developed to detect the corners. However, it detects false 
corners, e.g., corners on a circle, because of quantization noise. 
Mokhtarian and Suomela [5] detects corners at a high scale in CSS 
and tracks them through multiple lower scales in order to improve 
localization (CSS detector). When corners are detected in a very 
high scale, this method shows high robustness to noise but loses 
many true corners. On the other hand, if corners are detected in a 
low scale it introduces false corners. Moreover, its performance is 
limited due to the use of the single curvature threshold [7]. The 
enhanced CSS corner detector (ECSS detector) detects corners in 
multiple (three) medium scales with different thresholds [6]. The 
ECSS detector, though performed better than the CSS detector as 
reported in [7], was found less robust than their former method in 
our robustness tests. The reason is that both of them use arc-length 
parameterization but while the CSS detector looks for corners at a 
high scale offering better noise immunity, the ECSS detector finds 
corners at three medium scales and, therefore, introduces many 
weak corners. Nevertheless, the ECSS detector requires less time 
for corner localization than the CSS detector. 

 
3. PROPOSED CORNER DETECTOR 

 
The arc-length, used to parameterize planar curves by the existing 
detectors, is not preserved under affine transformations [8]. 
Therefore, unlike the existing detectors [4-6], we parameterize 
planar curves using affine-length. To avoid choosing false corners 
and missing true corners, we detect corners in three consecutive 
medium scales like the ECSS detector and then track the detected 
corners down to the finest scale in two steps. Since a subset of true 
corners which are strong enough to survive in affine 
transformations should suffice, we tune the parameters at different 
steps so that weak corners, which are locally unstable and also 
known as round corners, are not detected. 
 
3.1. Affine-length Parameterization 
 
The affine-length  between two points P1 and P2 is 
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which is absolutely invariant to rotation, but relatively invariant to 
scale change [8], hence to affine transformations. Direct affine-
length parameterization in (1) using (6) involves up to third order 
derivatives of x(t) and y(t) [8]. However, we show below that the 
numerator of (1), which incurs higher order derivatives, equals to 
one in the case of affine-length parameterization. Now by 
differentiating x( ) and y( ) 
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Again by differentiating )(x and )(y we have 
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where )(tx and )(ty are third order derivatives. From (7) and (8) 
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Therefore, the curvature on the affine-length parameterized curve 
in CSS is given by according to (1) as 
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where according to the property of the Gaussian convolution  
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The affine-length parameterized curvature in (10) incurs only 
up to second order derivatives of x(t) and y(t) like the arc-length 
parameterized curvature in (4). So, the affine-length parameterized 
curvature can be exploited to extract robust corners with the same 
computational cost as the arc-length parameterized curvature. 
 
3.2. Corner Detection 
 
We use Canny edge detector [9] to extract edges (planar curves) 
from gray-scale images. On each curve, corners are defined as the 
local maxima of the absolute curvature, defined in (10). We detect 
corners in three medium scales like the ECSS detector. We remove 
round corners by introducing three thresholds corresponding to 
three detection scales; since the curvature of a sharp corner is 
higher than that of a round corner. False corners are eliminated by 
comparing each curvature maximum with its two neighboring 
minima based on the assumption that the curvature of a corner 
point should be at least double the curvature of a neighboring 
minimum [5]. The outline of the proposed corner detector is: 

 Find edge image using the Canny edge detector. 
 Extract edges from the edge image: 

a. fill gaps if they are within a range and select long edges, 
b. find T-junctions and mark them as T-corners. 

 Parameterize each edge with its affine-length. 
 For each parameterized edge, compute absolute curvature at an 

appropriate scale in { m, m+1, m+2} and determine corners by 
comparing the curvature maxima to the corresponding curvature 
threshold of edge in {tm, tm+1, tm+2} and the neighboring minima. 
 Track the corners down to the lowest scale considering a small 

neighborhood in order to improve localization. 
 Further track the corners on the original edge at the lowest 

scale considering the same neighborhood size. 
 Remove multiple occurrences of same corners, compare T-

corners with the tracked corners and add those T-corners which 
are far away from the detected corners. 

 
3.2.1. Edge Extraction and Selection 
In default parameter setup, the Canny edge detector extracts too 
many edges of different lengths, many of which do not contain 
strong corners. Furthermore, the number and lengths of the 
extracted edges may vary significantly in affine transformations. In 
order to extract strong edges, we set the low and high thresholds of 
the Canny edge detector at 0.2 and 0.7, respectively. While 
extracting edges from the edge image we allow a gap size of 1 
pixel. We select the extracted edges of length np (in pixels) if 

/)( hwnp , (12)

where w and h are width and height of the image and  is a length 
control parameter. If  is small only long edges are selected, if  is 
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large short edges are also selected. In our experiments, we set 
 = 15. The above edge extraction set up avoids selecting large 

number of weak and very short edges, thereby helps speeding up 
the later steps. If an edge runs through any point which is 2 pixels 
away from an end of another edge, we select that end as a T-
junction and add to the set T-corners. 
 
3.2.2. Affine-length Parameterization and Corner Detection 
We then parameterize each selected edge (t) using its affine-
length  and select n = floor( ) equally distant points on the 
parameterized curve ( ). Therefore, the distance between two 
successive points on ( ) is affine-length 1 on (t). This point 
selection strategy reduces the possible division by zero effect that 
may be caused in the case of long horizontal or vertical edges 
during curvature calculation. We set corner detection scales m = 3, 

m+1 = 4, and m+2 = 5 and corresponding thresholds tm = 0.04, 
tm+1 = 0.035, and tm+2 = 0.03 for short, medium, and long edges 
respectively. The short, medium, and long definitions of affine 
parameterized edges are defined by the constraints n  100, 
100 < n  300, and n > 300, respectively. We compute absolute 
curvature at all points of ( ). A local maximum is either a corner, 
the top of a round corner, or a peak due to noise. The later two 
should not be detected as true corners [5]. The curvature of a true 
corner should be greater than that of a round corner. If a curvature 
maximum is greater than the corresponding edge threshold, the 
maximum point is selected as a corner candidate, and thus 
eliminating round corners. In the smoothed curve, there may be 
points (due to noise or false corners) whose curvature values are 
greater than the edge threshold. A corner candidate is added to the 
corner set if the curvature at this point is at least double of its two 
neighboring minima, and hence eliminating false corners.  
 
3.2.3. Corner Tracking and Adding T-corners 
As corners are detected at coarse scales, their localization may not 
be good. The improvement is done in two steps. In first step, we 
track the corners on ( ) down to the lowest scale by considering a 
neighborhood of size 3 on each side of each corner. For example, 
if a corner is detected at the p-th point on ( ) at  = 5, first we 
track this corner at  = 4 and consider 7 consecutive points, where 
the p-th point is the midpoint. The point having the maximum 
absolute curvature is the tracked position of that corner at  = 4 
and the successive tracking is executed at  = 3,  = 2, and  = 1. 
In second step, each tracked corner is further tracked on the 
original edge (t) at  = 1 using the same neighborhood size. Note 
that no threshold is used in the tracking system which only 
changes the corner positions, not the number of corners. However, 
corners do not move dramatically during tracking and only a few 
other (neighbors) curvature values need to be computed during 
tracking [5]. As a consequence, corner localization is improved 
without increasing the computational cost since the number of 

curvature computations is almost the same as the ECSS detector. 
During corner tracking, there may be some corners that merge at 
the same point with the same curvature value. Therefore, once we 
have the tracked corner set, we refine the set so that there is only 
one existent of any corner. At last, a T-corner is added to the final 
corner set if it is far away from the detected corners considering a 
10×10 neighborhood. 
 

4. PERFORMANCE EVALUATION 
 
Most of the corner detectors use only a few of images and test their 
performance using the ground truth or visual inspection based on 
human intuition [4-7]. This evaluation criterion is useless for 
proper robustness tests. First, it is very hard to point out all corner 
locations in natural images by human intuition. Second, human 
eyes are unable to measure the corner strength. Third, the volume 
of works with a large image database for ground truth collection 
prohibits its adoption. Finally, there is no standard procedure to 
collect ground truth, e.g., how many people should be involved 
and how to assess their subjective decisions. 

Repeatability is defined as the ratio Ro of the number of 
corner repetitions (between original and test images) Nr to the 
number of corners in the original image No. The ratio Rt of Nr to 
the number of detected corners in the test image Nt is also used [3]. 
The potential problem with Ro and Rt is that they are highly 
sensitive to false corners. If a corner detector detects all points in 
the original image as corners, then Nt = Nr and Rt will be 100%.  In 
contrast, if a corner detector detects all points in the test image as 
corners, then No = Nr and Ro will be 100%. For fair and 
unambiguous comparisons we propose the average of Ro and Rt as 
the average repeatability Ravg defined as 

to
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Localization error is defined as the amount of pixel deviation 
of a repeated corner. It is measured using the root-mean-square-
error (RMSE) of corresponding positions of repeated corners in 
the original image and in the transformed image [3]:  
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where (xoi, yoi) and (xti, yti) are the positions of i-th repeated corner 
in original and transformed images respectively. 

 
5. PERFORMANCE COMPARISON 

 
We used MATLAB 7.0 to implement the proposed ARCSS 
detector and compare it with existing CSS and ECSS detectors. We 
had total 23 different original 512×512 gray-scale images [10] and 
total 6394 test images of six categories. We rotated each original 

(a) original image  (b) edge map of (a) (c) CSS detector (d) ECSS detector (e) ARCSS detector

Fig. 1: Corner detection in the original maple-leaf image by different curvature scale-space corner detectors
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image at 18 different angles from –90° to +90° at 10° apart, 
excluding 0°. We resized each original image using uniform scale 
factors from 0.5 to 1.5 at 0.1 apart, excluding 1.0. We also resized 
each original image using non-uniform scale factors from 0.7 to 
1.3 along the x-axis and from 0.5 to 1.5 along the y-axis at 0.1 
apart, excluding the cases when scaling factors were same along 
both the axis. We further used combined transformations: rotation 
from –30° to +30° at 10° apart, excluding 0°, followed by uniform 
or non-uniform scale factors from 0.8 to 1.2 at 0.1 apart. We 
compressed each original image using JPEG at 20 quality factors 
from 5 to 100 at 5 apart. We also added zero mean white Gaussian 
noise at 10 variances from 0.005 to 0.05 at 0.005 apart. Therefore, 
we had total 414 rotated, 230 uniform scaled, 1610 non-uniform 
scaled, 3450 rotated and scaled transformed images. We also had 
460 JPEG compressed and 230 Gaussian noised images. For 

calculating average repeatability Ravg, we transformed the original 
corners using the original transformation parameters, if necessary, 
prior to finding their repetitions in the test corner set and an RMSE 
value of maximum 3 pixels was allowed to find a repetition.  

Fig. 1 shows the corners detected by the existing CSS and 
ECSS and the proposed ARCSS detectors in maple-leaf image. 
While the CSS detector missed some true corners and the ECSS 
detector introduced some weak corners, the ARCSS detector 
missed less true corners and introduced less weak corners. Fig. 2 
shows average repeatability and localization error under geometric 
transformations, JPEG compression, and Gaussian noising. Figs. 3 
to 6 show the details under different attacks. It was observed that 
the ARCSS detector performed the best among the three in terms 
of both average repeatability and localization in geometric attacks. 
This is because during corner detection while the ARCSS detector 
uses the affine-length parameterization, the CSS and ECSS 
detectors use the arc-length parameterization. Nevertheless, it 
showed lower average repeatability than the CSS detector but 
better localization than both the CSS and ECSS detectors in JPEG 
compression and noising. The reason is the CSS detector obtains 
corners at a higher scale in CSS than the other two and, therefore, 
gains higher noise immunity to signal processing attacks. But as a 
consequence it misses some true corners. 

 
6. CONCLUSIONS 

 
Unlike existing CSS and ECSS corner detectors, the proposed 
ARCSS corner detector parameterizes planar curves with the 
affine-length. By mathematical derivation we show that the affine-
length parameterized curvature involves up to second-order 
derivatives like the arc-length parameterized curvature. Therefore, 
the ARCSS detector extracts more robust corners with the same 
computational cost as the existing detectors. It outperforms the 
existing detectors in terms of both average repeatability and 
localization under affine transformations. It also possesses better 
localization than the existing detectors in lossy compression and 
noising. So, it could be exploited in many computer vision fields. 
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Fig. 2: Overall performance comparisons of corner detectors 
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Fig. 3: Repeatability and localization error under rotation 
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Fig. 4:  Repeatability and localization error under uniform scale 
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Fig. 5:  Repeatability and localization error under JPEG 
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Fig. 6:  Repeatability and localization error under Gaussian noise 
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