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ABSTRACT

In this paper, we present a new method for detecting visual

objects in digital images and video. The novelty of the pro-

posed method is that it differentiates objects from non-objects

using image edge characteristics. Our approach is based on a

fast object detection method developed by Viola and Jones.

While Viola and Jones use Harr-like features, we propose a

new image feature - the edge density - that can be computed

more efficiently. When applied to the problem of detecting

people and pedestrians in images, the new feature shows a

very good discriminative capability compared to the Harr-like

features.

Index Terms— people detection, image edge analysis,

object detection, video surveillance, pattern recognition.

1. INTRODUCTION

Detecting people and pedestrians in images and video has ap-

plications in video surveillance, road safety and many oth-

ers. For example, Collins et al. [1] developed a multi-camera

surveillance system that can detect and track people over a

wide area. Papageorgiou and Poggio [2] presented a vision

system that is used in Daimler-Chrysler Urban Traffic Assis-

tant to detect pedestrians. Haritaoglu and Flickner [3] de-

scribed an intelligent billboard that uses a camera to detect

and count the number of people in front of the billboard.

Existing methods for detecting people can be divided into

two major categories. In the first category, people are detected

using heuristic visual cues such as motion [4], background

scene [5], silhouette shape [3] or color [6]. Image regions that

may contain people can be identified rapidly by comparing

a video frame with the previous frames or the background

scene, or applying a color filter.

In the second category, pattern classifiers are trained to

determine if each image window resembles the human body -

a window is a fixed-size rectangular region of the image. This

approach can cope well with image variations. Papageorgiou

and Poggio [2] developed a pedestrian detection method, in
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which the Harr wavelet features are extracted from each 128-

by-64 window and then classified using support vector ma-

chines. Recently, Viola and Jones [7] proposed a fast object

detection method that relies on a cascade of classifiers. Each

classifier uses one or more Harr-like features and is trained us-

ing the adaptive boosting (AdaBoost) algorithm. Their method

has been applied successfully to the face detection problem.

This paper presents an object detection method that relies

on object edge characteristics to differentiate objects and non-

objects. We propose a new image feature called edge density

that can be computed very fast. We apply the new method

to detect people and pedestrians in images, and analyze the

discriminative power of the edge density feature.

This paper is organized as follows. Section 2 describes the

proposed object detection method and the new image feature.

Section 3 focuses on an application of the proposed method

in detecting people and pedestrians, and Section 4 is the con-

clusion.

2. EDGE DENSITY APPROACH

2.1. Overview

Our object detection method, which is motivated by Viola

and Jones’ system, scans exhaustively the windows of an in-

put image. Because there could be over 200, 000 windows

in a typical image of size 640 × 480 pixels, the classifica-

tion method must be fast to support real-time detection. In

our method, each window is processed by a cascade of strong

classifiers to determine if it is an object or a non-object. If a

strong classifier considers the window as a non-object, the

window is immediately rejected; otherwise, the window is

processed by the next strong classifier in the cascade. Be-

cause the majority of windows in an input image are non-

object, the cascade structure reduces the average processing

time per window.

A strong classifier is made up from one or more weak

classifiers, and each weak classifier uses exactly one image

feature extracted from the window. A weak classifier may

have an error rate close to 0.5, but a strong classifier con-

structed using a boosting algorithm such as the AdaBoost [8]

can have a lower error rate. The key idea of the AdaBoost al-
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gorithm is to force each weak classifier to focus more on the

training samples that the previous weak classifiers could not

process correctly.

2.2. New Image Feature based on Edge Density

The system proposed by Viola and Jones [7] uses Harr-like

features. A Harr-like feature is defined as the difference in

the pixel sums of two adjacent regions. If a Harr-like feature

is greater than a threshold, the weak classifier considers the

window as an object. Essentially, a salient Harr-like feature

indicates a window as an object if region A appears signifi-

cantly darker or brighter than region B, where regions A and

B are to be found through training. This strategy works well

for objects with a defined inner structure such as the human

face. For example, the eye region has a different brightness

level compared to its surrounding. However, for some objects

such as the human body (standing/walking pose) the domi-

nant visual characteristics are the outer shape and edges. This

observation motivates us to develop a new image feature that

is based on edge density.

Fig. 1. Left: an image window. Middle: the edge magnitude.

Right: three edge density features where each feature is the

average edge magnitude in a specific subregion.

For a given window, an edge density feature measures the

average edge magnitude in a subregion of the window (see

Fig. 1). Let i(x, y) be a window and e(x, y) be the edge

magnitude of the window. For a subregion r with the left-top

corner at (x1, y1) and the right-bottom corner at (x2, y2), the

edge density feature is defined as

f =
1
ar

x2∑

x=x1

y2∑

y=y1

e(x, y) (1)

where ar is the region area, ar = (x2 −x1 +1)(y2 − y1 +1).
If the edge density feature is greater (or smaller) than a

threshold, the weak classifier considers the window as an ob-

ject. This is equivalent to saying that a strong (or weak) pres-

ence of image edges in a subregion will determine if the win-

dow is an object. In a given window, there will be several

thousands of subregions or features. The objective of system

training is to identify the most salient features.

For the task of window scanning, there is a very efficient

method to compute edge density features. Let I = {I(x, y)}
be the input image of size H × W . Let E = E(x, y) be its

edge magnitude; E(x, y) is found by applying edge operators,

such as the difference, the Sobel or the Prewitt operators, on

the entire image. The edge magnitude is a combination of the

edge strength along the horizontal and vertical directions:

E(x, y) =
√

E2
h(x, y) + E2

v(x, y) (2)

From the edge magnitude image E, we compute an edge

integral image S. The pixel value S(x, y) is defined as

S(x, y) =
x∑

x′=1

y∑

y′=1

E(x′, y′) (3)

That is, S(x, y) is the sum of edge magnitudes in the rectan-

gular region {(1, 1), (x, y)}.

Given the edge integral image, the edge density feature of

a subregion r = {(x1, y1), (x2, y2)} can be computed using

only a few arithmetic operations:

f =
1
ar

{S(x2, y2) + S(x1 − 1, y1 − 1)

− S(x2, y1 − 1) − S(x1 − 1, y2)} (4)

Our approach requires an extra computation for the edge

magnitude image E before scanning occurs. Subsequently,

each edge density feature involves only one subregion whereas

each Harr-like feature involves at least two subregions. Hence,

if the same number of features is used, the proposed approach

can be expected to run fast. In Section 3, we shall study the

classification performance of the new image feature.

2.3. Selecting the Most Salient Feature

A weak classifier is built by selecting the best feature from a

feature pool of several thousands. This section describes the

feature selection technique.

In a given training set, let w+
1 , w+

2 ,...,w+
M be the weights

of M training object patterns (i.e. positive patterns). Let w−
1 ,

w−
2 ,...,w−

N be the weights of N training non-object patterns

(i.e. negative patterns). Let w+ be the sum of all weights

for object patterns, w+ =
∑M

i=1 w+
i . Let w− be the sum of

all weights for non-object patterns, w− =
∑N

i=1 w−
i . During

training, we can modify individual weights [7], but the sum

of w+ and w− is always equal to 1.

For a given feature f that corresponds to a subregion r,

we first compute the cumulative histograms c+(θ) and c−(θ)
for the object and non-object patterns, taking into account the

pattern weights. There are two possible decision rules: (1)

object if f > θ, and non-object otherwise; (2) object if f ≤ θ,

and non-object otherwise. Here, θ is a fixed threshold. The

error rate for the first decision rule is

e1(θ) = w− + c+(θ) − c−(θ) (5)
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The error rate for the second decision rule is

e2(θ) = w+ − c+(θ) + c−(θ) (6)

We select the decision rule that gives a smaller error. Hence,

e = min(e1, e2) is the error rate if feature f is used. From the

feature pool, we choose the feature that gives the minimum

error rate.

3. EXPERIMENTS AND ANALYSIS

We apply the proposed object detection approach to the prob-

lem of detecting people and pedestrians in images. In this

section, we aim to study the process of building weak and

strong classifiers for people detection, and the classification

performance of the edge density feature.

3.1. Experiment Data

We collected a total of 2359 images that contain people and

pedestrians, and manually identified the coordinates of the

people in these images. From these images, 2664 people pat-

terns were extracted. There are strong variations in the pat-

terns: frontal view, side view, people in standing, bending,

walking and running poses. We used 2000 patterns for train-

ing and 600 patterns for testing. In addition, from 10, 000
non-people images, we extracted 4000 patterns for training

and 600 patterns for testing. Note that the training and test

patterns were taken from disjoint sets of images. Examples of

the people and non-people patterns are shown in Fig. 2.

Fig. 2. Examples of people and non-people patterns.

The aspect ratio (height/width) of the people patterns in

our dataset has a mean value of 3.28 and a median value of

3.21. Note that the patterns include children as well as people

in running or striding pose. Based on this result, we selected

a window size of 60 × 18 pixels for designing the classifiers.

This window size is found to reduce the computation load

while keeping sufficient visual details for classification.

3.2. Analysis of Edge Density Features

The difference operators, hh = [1,−1] and hv = [1,−1]T ,

are used in the following experiments. We train a strong clas-

sifier for 40 rounds. In each round a weak classifier using

exactly one edge density feature is formed. The weights of

training patterns are modified according to the AdaBoost al-

gorithm to put more emphasis on the patterns that the previous

weak classifier incorrectly handles.
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Fig. 3. Error rates of weak classifiers and a strong classifier

on: a) the training set; b) the test set.

Fig. 4. Edge density features selected at boosting round

2+, 14−, 17−, 32−, 33+ and 37−. The + or − superscript

indicates if the feature uses decision rule (1) or (2).

Figure 3a shows the error rates of the strong classifier

and weak classifiers as training progresses. The classification

thresholds are set according to the AdaBoost algorithm [7].

The results show that the training error of the strong classifier

decreases steadily with respect to the number of the training

rounds. However, the error rates of individual weak classifiers

fluctuate with an upward trend; this can be explained by the

fact that each weak classifier focuses on more and more ”dif-
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ficult” patterns in the training set. After 40 training rounds,

the strong classifier has an error rate of 11.3%.

Some edge density features selected by the strong clas-

sifier are shown in Fig. 4. These features indicate that the

strong classifier mostly picks up the edge difference between

the human body and the surrounding. For example, the fea-

ture selected at round 2 reflects the fact that there are strong

edges in the human head region.

The performances of the strong classifier and individual

weak classifiers on the test set are shown in Fig. 3b. The re-

sults show that even though the error rate of each weak clas-

sifier is high, the error rate of the strong classifier decreases

steadily. In this case, there is little change in the error rate of

the strong classifier after round 10. Using a validation set, we

can detect when this occurs and stop training the strong clas-

sifier. At this point, we usually collect more data for training

the next strong classifier and add it to the cascade.

The strong classifier using 10 features has an error rate

of 14.8%, a false positive rate of 14.3%, and a false negative

rate of 15.3%. For object detection purpose, we can use a

cascade of strong classifiers, each of which is set to a low

false negative rate (at a cost of a higher false positive rate).

3.3. Comparison of Edge Density and Harr-like Features

For comparison purposes, we trained two strong classifiers:

one using only edge density features, and the other using only

Harr-like features [7]. The performances of the two strong

classifiers on the training set and the test set are shown in

Fig. 5.

The figure shows that the training error decreases faster

using the edge density features. For example, after 10 rounds

the training error is 13.4% for edge density feature, and 20.6%
for Harr feature. The test error is also lower for the strong

classifier that uses edge density features. For example, af-

ter 10 training rounds the best test error is 14.4% for edge

density feature, and 18.7% for Harr feature. These results

for the people detection task demonstrate a clear performance

improvement using the proposed feature.

4. CONCLUSION

We presented an object detection method based on a new im-

age feature called edge density, which measures the presence

or absence of image edges in a specific region of the object.

The edge density feature can be computed very efficiently and

it is found to have a better discriminative capability compared

to the Harr-like features, when applied to the problem of de-

tecting people in images.
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