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ABSTRACT

This paper addresses the problem of detecting features run-
ning along lines or piecewise constant curves. Our method
is adapted either for common image features like edges or
ridges as well as any kind of features that can be designed
by a priori knowledge. The main contribution of this paper
is to unify the well-known Beamlet transform, introduced by
Donoho et al. [1], with linear filtering technique in order to
define what we call the Feature-adapted Beamlet transform. If
the desired feature is chosen to belong to the class of steerable
filters, our method can be achieved in linear time and can be
easily implemented on a parallel machine. We present some
experimental results both on edge- and ridge-like features that
demonstrate the substantial improvement over classical fea-
ture detectors.

Index Terms— Beamlet transform, steerable filters, fea-
tures detection, curvilinear objects, biology.

1. INTRODUCTION

The problem of detecting curvilinear objects in images arises
in various areas of image processing and computer vision,
since such kind of objects occur in every natural and synthetic
images, like contours of objects, roads in aerial imaging or
DNA filaments in biological microscopy.

Commonly, curvilinear objects are considered as 1-dimen-
sional manifolds that have a specific profile running along a
smooth curve. The shape of this profile may be an edge- or
a ridge-like feature. It can also be represented by more com-
plex designed features. For example, in the context of DNA
filament analysis in fluorescent microscopy, it is acceptable
to consider the transverse dimension of a filament to be small
relative to the PSF width of the microscope. Hence, the shape
of the profile may be accurately approximate by a PSF model.
A recent study of such models for various types of micro-
scopes can be found in [2].

One way to detect curvilinear objects is to track locally
the feature of the curve-profile; linear filtering or template
matched filtering are well-known techniques for doing so. Clas-
sical Canny edge detector [3] and more recently detectors de-
signed in [4] are based on such linear filtering techniques.

They involve the computation of inner-products with shifted
and/or rotated version of the feature template at every point
in the image. High response at a given position in the image
means that the considered area has a similarity with the fea-
ture template. Filtering is usually followed by a non-maxima
suppression and a thresholding step in order to extract the ob-
jects. The major drawbacks of such approaches come from
the fact that linear filtering is based on local operators: it is
highly sensitive to noise but not sensitive to the underlying
smoothness of the curve, which is a typical non-local prop-
erty of curvilinear objects.

Alternativaly, the Radon transform is a powerful non-local
technique which may be used for line detection. Also known
as the Hough transform in the case of discrete binary images,
it performs a mapping from the image space into a line pa-
rameter space by computing line integrals. Formally, given
an image f defined on a sub-space of R2, for every line pa-
rameter (ρ, θ), it computes

ϕ(ρ, θ) =

∞∫

−∞

∞∫

−∞

f(x, y)δ(ρ− x cos(θ)− y sin(θ))dxdy.

(1)
Peaks in the parameter space reveals potential lines of inter-
est. This is a very reliable method for detecting lines in noisy
images. However, there are severals limitations. First, di-
rect extension of that method to detect more complex curves
is unfeasible in practice for it increases the complexity ex-
ponentially by adding one dimension to the parameter space.
In addition, Radon transform computes line integrals on lines
that pass through the whole image domain and does not pro-
vide information on small line segments.

Given an image of N ×N pixels, the number of possible
line segments defined is in O(N4). Direct evaluation of line
integrals upon the whole set of segments is practically infea-
sible due to the computational burden. One of the methodolo-
gies proposed to address this problem is the Beamlet trans-
form [1, 5, 6]. It defines a set of dyadically organized line
segments occupying a range of dyadic locations and scales,
and spanning a full range of orientations. This system of line
segments, called beamlets, have both their end-points lying
on dyadic squares that are obtained by recursive partition-
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ning of the image domain (see [1] for complete details). The
collection of beamlets has a O(N2 log(N)) cardinality. The
underlying idea of the Beamlet transform is to compute line
integrals only on this smaller set, which is an efficient substi-
tute of the entire set of segments for it can approximate any
segment by a finite chain of beamlets. Beamlet chaining tech-
nique also provides an easy way to approximate piecewise
constant curves.

Formally, given a beamlet b = (x, y, l, θ) centered at posi-
tion (x, y), with a length l and an orientation θ, the coefficient
of b computed by the Beamlet transform is given by

Φ(f, b) =

l/2∫

−l/2

f(x + γ cos(θ), y + γ sin(θ))dγ. (2)

Equation (2) is closely related to equation (1) since Beam-
let transform can be viewed as a multiscale Radon transform;
they both integrate image intensity along line segments. How-
ever, they do not take into account any line-profile. It implies
that the Radon and Beamlet transforms are not well-adapted
to represent curvilinear objects carrying a specific line-profile.

The contribution of this paper is to unify the Beamlet
transform with linear filtering technique in order to introduce
what we call the Feature-adpated Beamlet Transform, which
is able to incorporate knowledge about the desired line-profile
running along curves. We will see that, if the profile is de-
signed as a steerable filter, our methodology leads to an ef-
ficient implementation. Section 2 presents our contribution
while section 3 presents the methodology we use for detect-
ing of curvilinear objects in noisy images. Finally, in section
4, we present some experimental results both on edge- and
ridge-like features detection that demonstrate the substantial
improvement of our method over classical feature detectors.

2. FEATURE-ADAPTED BEAMLET TRANSFORM

Consider a filter h representing a 2-dimensional line-profile.
Let hθ be a rotated version of h in the direction θ:

hθ(x, y) = h(Rθ(x,y)), (3)

where Rθ is the 2-dimensional rotation matrix of angle θ. In
a first step, we filter our image f with hθ before computing
the beamlet coefficient from equation (2).We have:

Ψ(f, b) =

l/2∫

−l/2

f ∗ hθ(x + γ cos(θ), y + γ sin(θ))dγ. (4)

A high coefficient means that the local feature runs signif-
icantly along b. We call this transform the Feature-adapted
Beamlet transform. In general, the computation of all beam-
let coefficients is not conceivable, since it requires to convolve
the image as many times as the number of θ’s. For the special

case where h is selected to be within the class of steerable
filters [7], we can write hθ as a linear combination of basis
filters:

hθ(x, y) =

M∑
j=1

kj(θ)h
θj (x, y), (5)

where kj’s are interpolation functions that only depend on θ.
The basis filters hθj ’s are independant of θ. A convolution of
an image with a steerable filter of arbitrary orientation is then
equal to a finite weighted sum of convolution of the same im-
age with the basis filters. Hence, equation (4) can be written
as

Ψ(f, b) =

M∑
j=1

kj(θ)

l/2∫

−l/2

fθj (x + γ cos(θ), y + γ sin(θ))dγ

=

M∑
j=1

kj(θ)Φ(fθj , b), (6)

where fθj = f ∗hθj andΦ(fθj , b) corresponds to the beamlet
coefficient of b computed over fθj using equation (2). As
a result, in order to compute equation (4) for every beamlet
coefficient, we do as follows: we first convolve the image
as many times as the number of basis filters composing our
filter h. This number is typically very small. On each filtered
image, we compute the standard Beamlet transform. Finally,
for each beamlet, we compute its coefficient using equation
(6). Inspired from the scheme defined in [7], Fig.1 shows the
Feature-adapted Beamlet transform diagram.

k (θ)
i

Input

image

Basis

filter

bank
Beamlet

Transform

Gain

maps

Summing

junction

Feature-adapted

Beamlet

Transform

Fig. 1. Feature-adapted Beamlet transform diagram.

All steps relative to a single basis filter can be simultane-
ously computed on a parallel machine. All these steps have a
O(N2) complexity. In this scheme, the evaluation of beam-
let coefficients consumes most of the computation time. To
speed up this step, we set an efficient cache strategy to pre-
compute most of the computation and use an approximation
of beamlet coefficients based on the two-scale recursion tech-
nique [8]. This strategy is quite fast at the expense of a signif-
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icant memory load. For a 1024× 1024 image, our implemen-
tation of the standard Beamlet transform takes approximately
1s on a dual processors based computer.

3. DETECTION OF CURVILINEAR OBJECTS

In this section, we present a detection method using the Feature-
adpated Beamlet transform. This method provides a list of
beamlets that best represent curvilinear objects carrying a spe-
cific line-profile in an image. It is based on a multiscale co-
efficient thresholding technique directly taken from [9] so we
refer the reader to this paper for more details.

A Recursive Dyadic Partition (RDP) of the image domain
is any partition, starting from the whole image domain, ob-
tained by recursively choosing between replacing any square
of the partition by its decomposition into four dyadic squares
or leaving it unsplit. This concept is very similar to the quadtree
decomposition technique. A beamlet-decorated RDP (BD-
RDP) is a RDP in which terminal nodes of the partition are
associated with at most one beamlet. By construction, BD-
RDP provides a list of non-overlapping beamlets. In order to
select the list of beamlets that best represent curvilinear ob-
jects in the image, we maximize over all beamlet-decorated
recursive dyadic partitions P = {S1, S2, ..., Sn} the follow-
ing complexity penalized residual sum of square:

E(P ) =
∑
S∈P

C2

S − λ2#P, (7)

where

CS = max
b∈S

FBT (f, b)√
l

measures the energy required to model the region S of the im-
age f by the beamlet b and λ is a MDL-like criteria that con-
trols the complexity of the model. A high value of λ yields to
a coarse representation of curvilinear structures; a small value
leads to a quite complex model with potentially a significant
number of false alarms. Equation (7) can be solved very effi-
ciently by a recursive tree-pruning algorithm due to additivity
of the cost function. See [9] for complete details.

4. EXPERIMENTS & RESULTS

4.1. Edge detection

In this section, we compare our methodology with a linear
filtering technique described in [4] which convolves the im-
age with a steerable filter and resolves for each image point
a polynomial equation in order to find the optimal orienta-
tion maximizing the filter response. This step is followed
by a non-maxima suppression and a thresholding step. This
class of steerable filters are designed as a combinaision of
Gaussian-based filters which are optimized under Canny-like
criteria. We use a 3rd order filter for both experiments (see [4]
for details). Fig.2 shows results on a noisy image corrupted

by Gaussian white noise with standard deviation σnoise = 50.
For our method, we use the well-known Bresenham algorithm
to highlight pixels traversed by meaningful beamlets. In both
cases, we determine the threshold value to keep 2,000 pixels
only. As we can see in Fig.2.d, the number of false positives
is highly reduced with our mehtod.

(a) (b)

(c) (d)

Fig. 2. Edge detection: (a) original image (b) corrupted im-
age with Gaussian white noise σnoise = 50. (c) Detection
using 3rd order edge detector defined in [4]. (d) Detection us-
ing feature adapted beamlet transform carrying the same 3rd

order filter.

4.2. Ridge detection

We evaluate the performance of the Feature-adapted Beam-
let transform compared to the standard Beamlet transform for
the detection of multiple lines segments in noisy images. We
test these two techniques on images of DNA filaments ob-
tained by fluorescent microscopy. These filaments have a
ridge-like profile. For the choice of h, we choose a 2nd or-
der filter defined in [4]. We use the same algorithm described
in section 3 for both transforms with λ = 100. Notice that
standard Beamlet transform behaves like a low-pass filter and
hence, is sensitive to the background intensity, as opposed to
the Feature-adpated Beamlet transform which can cancel con-
stant or more complex background, depending on the vanish-
ing moments of h. In the following experiment, in order to
get these two transforms comparable between each other, we
suppose the background to be constant and substract it from
the image before computing the beamlet coefficients. To do
so, we estimate the background mean intensity from the me-
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(a) (b) (c)

Fig. 3. Ridge detection: (a) image of DNA filaments obtaining by fluorescent microscopy. (b) Detection using standard Beamlet
transform. (c) Detection using Feature-adapted Beamlet transform carrying a 2nd order filter. Notice that spurious detections
are reduced with our method.

dian of the image. Fig 3 presents the results. Notice that in
the top left corner of Fig 3.b, the spurious detections are due
to the fact that real background is not constant over the whole
image domain. As can be seen in Fig 3.c, this is not the case
for our method.

5. CONCLUSION

In this paper, we have presented a method for detecting fea-
tures running along lines or piecewise constant curves. Our
contribution unifies the Beamlet transform with steerable fil-
tering technique. It leads to an original and efficient imple-
mentation of the Feature-adapted Beamlet transform. This
transform is very general for representing curves carrying any
kind of features designed by a priori knowledge. Prelimi-
nary results on both edge- and ridge-like profile have shown
significant improvements over linear detector techniques and
multiscale detection techniques based on traditional Beamlet
transform. This work is a first step towards a more in-depth
investigation of the method. We point out that statistical hy-
pothesis tests can also be easily incorporated in the coefficient
thresholding, so that our detection method is able to control
the number of false alarms.
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