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ABSTRACT

In this paper we present an adaptive foreground object extrac-
tion algorithm for real-time video surveillance. The proposed
algorithm improves the previous Gaussian mixture background
models (GMMs) by applying a two-stage foreground/back-
ground classification procedure to remove the undesirable sub-
traction results due to shadow, automatic white balance, and
sudden illumination change. The traditional background sub-
traction technique usually cannot work well for situations with
lighting variations in the scene. In the proposed two-stage

classification, an adaptive classifier is applied to the foreground

pixels in a pixel-wise manner based on the normalized color
and brightness gain information. Secondly, the remaining
foreground candidate pixels are grouped into regions and the
corresponding background regions are compared to check if
they are foreground regions. Experimental results on some
real surveillance video are shown to demonstrate the robust-
ness of the proposed adaptive foreground extraction algorithm
under a variety of different environments with lighting varia-
tions.

Index Terms— Real-time, surveillance, background sub-
traction, foreground extraction, lighting variation

1. INTRODUCTION

The main goal of video surveillance is to detect the fore-
ground objects, and background subtraction is the most fun-
damental and common approach to achieve this goal. In re-
cent years, several different background subtraction techniques
are presented. Tuzel, et al. [1] used a Bayesian approach
to background modeling. They defined each pixel as a mix-
ture of multivariate Gaussian distributions and estimated the
means and covariances of all Gaussian functions from a pe-
riod of background video frames. Elgammal et al. [2] pro-
posed a non-parametric model for background subtraction.
The recent samples of intensity values for each pixel are used
to compute the non-parametric probability density function.
The drawback of this method is that it requires a consider-
able amount of memory to store the probability density func-
tions. Stauffer and Grimson [3] proposed to use a mixture of
Gaussian functions to model the intensity distribution of each
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Fig. 1. The system flow chart.

background pixel, and the background model can be gradu-
ally adapted to the temporal intensity changes.

After background subtraction, the subtracted non-back-
ground pixels include the foreground objects and background
pixels with intensity changes caused by lighting variations or
auto white balance. Some shadow detection methods have
been proposed in the past. In Porikli and Thornton’s work [4],
they apply a shadow weak classifier as a pre-filter first, then
model the selected shadow pixels using multivariate Gaus-
sians. Huang et al. [5] first segmented each frame into regions
based on motion similarity. The intensities of the shadow re-
gions are assumed to be similar to those of the corresponding
background regions by a scale. They estimate the scale to de-
termine if a region belongs to a shadow region. Elgammal et
al. [2] used the chromaticity coordinates r,g and the ratio of
the lighting descent information for shadow detection. Tian
et al. [6] presented a normalized cross-correlation algorithm
for shadow removal, but it is time-consuming and it can not
work well with homogeneous regions.

In many cases, the lighting changes or the auto white bal-
ance function is the video camera makes the background mod-
eling very difficult, thus leading to unsatisfactory background
subtraction results. In the proposed foreground extraction al-
gorithm, as shown in Figure 1, we employ the mixture of
Gaussians approach [3] to model the background, followed
by a proposed two-stage procedure for classifying foreground
and background pixels under lighting variations. The first step
of our algorithm involves using a classifier to pixel-wisely
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classifying pixels to background or foreground based on the
normalized color and intensity gain information. In the sec-
ond step, we group the remaining pixels into regions based
on their gain values and compare their regional color features
with those computed from the corresponding background model
to decide if the region is background or foreground.

The rest of this paper is organized as follows: In section
2, we describe the background modeling method based on the

Gaussian mixture models [3]. The 2-stage foreground/background

classification algorithm is discussed in section 3. Some exper-
imental results are shown to demonstrate the robustness of the
proposed algorithm under different lighting variation environ-
ments in section 4. Finally, we conclude this paper in section
5.

2. MIXTURE OF GAUSSIANS MODEL FOR
BACKGROUND SUBTRACTION

Stauffer and Grimson [3] propose a mixture of K Gussian
distributions (/X is a small number from 3 to 5) to model the
intensity distribution for each pixel. Assume the history of a
particular pixel, {z, yo }, at any time ¢ be given by

{X175Xt}:{I(x07y0aZ) 1§Z§t}7 (1)

where I is the image sequence. {X7, ..., X;} is modeled by
a mixture of K Gaussian distributions, and the probability of
the observed pixel with value X at time ¢ is estimated as:

K

P(X) = Zwi,t *0(X, iy Sit), 2
i=1

where p;+ and X;; are the mean value and the covariance

matrix of the i" Gaussian in the mixture model at time ¢, and

n(X,1,%) = #1e*%(X*ut)TE_l(X*m)7 3)
(2m)% |5}

and

wit = (1—a)w; -1+ a(M;,) 4)
is the estimated weight of the i** Gaussian in the mixture
models at time ¢, where « is the learning rate, and M; ; is 1
for the matched Gaussian and 0 for the remaining Gaussians.

The update equations of y; and 0,2 are as follows:
pe = (1= p)pe—1 + pX, ©)

0’ = (1= por_1”+p(X — )" (X —pe),  (6)
where p = an(X|u;, 0;). For computational reasons, the red,
green, and blue pixel values are assumed to be independent
and have the same variances, so the form of the covariance
matrix is X; ; = 0;21. The K Gaussian distributions are or-
dered by the value of w/c, and the first B distribution are used
as the background model, where

b
B = i i > T).
argmbln(Zw >T)

i=1
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Fig. 2. The light change information retrieval. (a) The esti-
mated background. (b) The current frame. (c) The ground
truth. (d) Black pixels are results after background subtrac-
tion. (e) Red pixels are real foreground objects, and blue pix-
els are light changing pixels. (f)(g)(h) The distributions of
the absolute r, g difference between current pixel and corre-
sponding background pixel and |gain| of the blue pixels in
(e), and the x-axis is the background intensity(0 ~ 255).

The threshold 7" is the minimum portion of the total weight
given to background model. Foreground pixels are the pixels
which are more than 2.5 standard deviations away from any
of the B distributions. For more details, we refer to [3]. In
our implementation, the parameters K and 7" are set to 3 and
0.4, respectively.

3. TWO-STAGE FOREGROUND SEGMENTATION
ALGORITHM

The light change includes brightening and darkening, which
may be due to illumination changes, shadowing or white bal-
ance. For bath cases, the influence is not on some individ-
ual independent pixels, but on a semi-transparent and gradu-
ally growing region. In the chromaticity coordinates, a pixel
caused by the light change is considered unaffected. Let the
red, green, and blue values of a pixel be R, G, and B. The
chromaticity coordinates of the pixel, r, g, and b, are

. R B G B B
" R+G+B Y R+G+B T R+1G+B

)

and r + g + b = 1. Thus, let the chromaticity coordinates
of the background model of a pixel be 7}, g3, and b, and of
the observed pixel value be 7,, g,, and b,. These three pairs
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should be very similar. That is,

€))

Ty ~ Toy Gb ™~ Yo, by ~ b,.

However, the chromaticity coordinates of the pixels in the
dark area can vary a lot even the light changing slightly in the
RGB space since the value R+ G + B in equation (8) is small.
Thus, we provide a 2-stage algorithm to alleviate the problem
due to light changes. Firstly, a pre-learned classifier is used
to pixel-wisely remove the pixels with slight light changes,
which is done by the background subtraction, especially the
pixels in the dark area. Secondly, the remaining pixels are
segmented into regions according to the gain, that is the ratio
between the light change and the corresponding background
value, given by

1 o I b

Iy

where I}, is the background model intensity and I, is the ob-
served pixel intensity. The pixels with similar gain are grouped
into a region. Then, the average values 7, and g, of each re-
gion are compared with their corresponding background aver-
age values 7}, and g, to determine if the region is foreground
or background with light changes.

. (10)

gain =

4. PIXEL-WISE CLASSIFIER

Figure 2(b)(c) are the 14-th frame and its ground truth image
in the test video 1 released from the IPPR contest'. We collect
a lot of images that are manually labeled with foreground and
background regions as depicted in Figure 2(c). The blue area
in Figure 2(e) shows the pixels passing the background sub-
traction due to white balance and shadow of the foreground
object. This information is taken to learn the classifier for
pixel-wisely removing the background pixels with light changes.
We generate three distributions to find the relation between
the light change and the background model intensity. The
first two distributions are related with these two equations

an

dr - |To - T‘b|

and

dg = [go — gl- (12)

Figure 2(f) and (g) are the distributions of d,. and d, to the
background model intensity, respectively. However, the dis-
advantage of chromaticity coordinates is the lack of lightness
information. So we add an extra component, gain, into the
decision. The distribution of the absolute gain, |gain|, is
shown in Figure 2(h). We can see the distribution of the back-
ground pixels under different lighting changes bounded by a
decreasing envelop function of the following form

—ci 1y
)

yr = ar +bx X e (13)

'IPPR contest: http://archer.ee.nctu.edu.tw/contest/

Table 1. The accuracy of the proposed algorithm on 3 IPPR
contest test video sequences.

Datal | Data2 | Data3 | Average
Total error pixels 47927 | 43085 | 22970 | 37994
Error pixels per frame | 319 287 153 253
Accuracy rate (%) 99.6% | 99.6% | 99.8% | 99.7%

where ay, b, and ¢, are the parameters to be determined from
the distribution, k = ’r’, ’g’ or ’gain’, I}, is the corresponding
background pixel intensity, and the function y provides the
boundary for foreground/backgroundclassification. The cur-
rent pixel is classified as a background pixel if it satisfies all
of the following conditions:

dr < yr, dg < Yg, |gain| < Ygain- (14)

5. REGION-BASED CLASSIFICATION

After the pixel-wise classification, the remaining pixels are
the foreground objects and the pixels suffering strong lighting
changes. Based on their gain values, these pixels are grouped
into regions based on a region growing technique. The pix-
els belonging to the same light change should have similar
gain values even if they are of different color. Thus, they are
grouped into a region. We compare the average values 7, and
g, of each region with their corresponding background aver-
age values 7, and g,. In addition, the average gain of the
region, gain, is also taken into the classification. The vari-
ation of the intensity in the background region due to light
changes should not be too large. Thus, a background region
should satisfy the following conditions:

To ™~ Tp, go ~ gba gain < Tgain7 (15)
where T4y is a threshold. In our experiment, Tm is set to
0.5.

6. EXPERIMENTAL RESULTS

The proposed method is used for real-time video surveillance
on a static web camera, and it processes about 24 frames per
second for color images at size 320 x 240 on PC with a 3GHz
Pentium IV CPU.

A robust initial background model is constructed in 5 sec-
onds by using GMMs. Then our proposed robust background
segmentation works well in a variety of environments with
the same parameter setting.

The tested video sequences include different environments,
such as outdoor scenes, indoor scenes with auto white bal-
ance, and light turning on/off. The proposed background seg-
mentation algorithm provides satisfactory results in real-time.
Some of the results are depicted in Fig. 3 and Fig. 4.
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(a) (b)

Fig. 3. The name of the video from top to bottom :
PetsD1TeC1 video of PETS 2001, Test data 3 of IPPR con-
test, IndoorGTTest2 video of IBM research, Test data 1 of
IPPR contest. The upper two rows and lower two ones are the
classified results on outdoor and indoor environments , re-
spectively. (a) The background image. (b) The current frame.
(c) The result of the pixel-wise classifier. The non-white pix-
els are the foreground region decided by the background sub-
traction. The blue pixels are the background with lighting
changes classified by the pixel-wise classifier, while the black
pixels are the classified foreground region. (d) The result after
the region-based classification. The blue pixels are the region
similar to the background. The red pixels are the foreground
object and the green pixels are its boundary.

Furthermore, we evaluated the accuracy of our proposed
method on 3 IPPR contest test video with ground truths. Each
video sequences contains 150 frames at size 320 x 240. The
accuracy of our algorithm is shown in Table 1. It is evident
that the proposed algorithm can provide very accurate fore-
ground/background segmentation results.

7. CONCLUSIONS

In this paper, we presented a robust foreground object extrac-
tion algorithm for real-time video surveillance under lighting
variations. The proposed algorithm first employs a mixture-
of-Gaussians model for background subtraction, followed by
the proposed two-stage foreground/background segmentation
algorithm. The first step is a pixel-wise foreground/background
classifier, which is based on applying decreasing exponential
curves as the separation function for foreground and back-
ground pixels based on the normalized color and gain val-
ues, respectively. The second step consists of a pixel group-
ing process and a region classification based on comparing
the regional color features of the current and the background

Fig. 4. The background subtraction results for the lab scene
sequences. The top, second, and bottom rows show the cases
with indoor diffusion shadow, automatic white balance, and
turning light off,respectively. (a), (b), (c), and (d) depict the
intermediate processing results, which are the same as those
in Figure 3. The small blobs shown in (d) are caused by the
movement of humans in the background.

model. Experimental results show the proposed foreground
object extraction algorithm is robust against different types of
lighting variation under different environments.
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