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ABSTRACT 

 
A statistical change detector, implemented as a zero-latency finite-
memory filter, is used to identify anomalies in temporal pixel 
statistics. An F-distributed test statistic is computed for each pixel 
and used in a hypothesis test. The tracker, with automatic track 
initiation and termination, uses a low-complexity pairwise Joint 
Probabilistic Data Association (JPDA) algorithm, which has been 
restricted to consider clusters (sub-problems) containing no more 
than two tracks. The track state and clutter model are augmented to 
include color. The detector and tracker are used to process sample 
video data. 
 

Index Terms – Object detection, Image motion analysis, 
Tracking filters, Surveillance. 
 

1. INTRODUCTION 
 
Automated surveillance systems are typically composed of signal 
processing and data processing subsystems [1]. The function of 
peak detection is usually executed within the former subsystem, 
while the function of tracking, the latter. In many systems the 
distinction between these functions is not clear. Tight coupling or 
merging of the functions can yield improved performance; 
however, development and maintenance effort is increased due to 
increased system complexity. 

The review of ‘classical’ multi-target tracking methods 
presented in [2] represents one end of the design spectrum, where 
only the coordinates of the peak maxima, in a continuous 
measurement space are passed from the signal processing 
subsystem to the data processing subsystem. Track-Before-Detect 
(TBD) techniques [3,4] represent the other end of the spectrum 
where tentative tracks are processed in the discrete (digital) 
measurement space prior to confirmation (i.e. when the track is 
deemed to be on a target, not clutter, and is presented to the 
operator). Approaches such as those described in [5-10], occupy 
the middle ground. In these ‘hybrid’ methods, local clutter 
statistics and detection characteristics (such as signal-to-noise 
ratio, peak shape and peak curvature) are generated by the detector 
and used by the tracker. 

The high spectral and spatial (angular) resolution of optical 
sensors, along with their rapid scan rates, support the application 
of TBD or hybrid approaches; however, hybrid approaches are 
more appropriate when computing resources are restricted and 
when target Signal to Noise Ratio (SNR) is high. When operating 
in the visible spectrum, peaks are typically identified using 
statistical change detectors [11,12] to suppress clutter (on 
background features of no interest). Trackers based on algorithms 
such as Probabilistic Data Association (PDA) [5-8,13], Joint 

Probabilistic Data Association (JPDA) [9,14], or Multiple 
Hypothesis Tracking (MHT) [10,15,16], are then applied. 

In this communication a statistical change detector, 
implemented as a zero-latency finite-memory filter, is used to 
identify anomalies in temporal pixel statistics. An F-distributed test 
statistic is computed for each pixel and used in a hypothesis test. 
The tracker uses a pairwise JPDA algorithm, which has been 
restricted to consider clusters (sub-problems) containing no more 
than two tracks. This design allows multiple closely-spaced targets 
to be tracked at a low computational cost, relative to conventional 
JPDA. It uses the confidence model described in [5] to 
automatically confirm and delete tracks. The track state is also 
augmented to include color and the color statistics of the 
background (clutter) are estimated. The techniques described are 
applied to a sequence of color images, they are however, when 
restricted to a single color, equally applicable to any digital sensor, 
such as radar or sonar. 
 

2. DETECTOR 
 
The change detector used here does not operate on a difference 
map (i.e. the intensity difference between consecutive frames) [11]; 
rather, it estimates the parameters of a General Linear Model 
(GLM) [17], which is used to describe the time dependence of 
each color in each pixel. This detector primarily uses temporal 
statistics, rather than spatial statistics. The characteristics of the 
linear model are selected to best suit the behavior of the image and 
the capabilities of the processing platform. A model of arbitrary 
order may be used, employing fitting functions of arbitrary form; 
however, a zero-order constant model was found to be optimal, for 
the video data collected during algorithm development. When this 
approach is adopted, and the appropriate data structures 
implemented (circular buffers), the mean (the model parameter) 
and the variance can be computed efficiently using sliding 
windows to evaluate moving averages. The computational effort is 
then independent of the length of the sliding (analysis) window, as 
only the image intensity values entering and exiting the window 
are processed. An expression for the F-distributed test statistic is 
given below. Appropriate expressions for the more general case 
can readily be derived; however, due to space constraints, only the 
simplest (and recommended) case is provided here. 

Under the null (no-change) hypothesis, it is assumed that the 
image intensity I , for the k th color of the pixel in the i th row 
and the j th column of a sequence of images, is distributed as a 

Normal variable, with constant ( ), ,i j kμ , which is independent 

of time. It is also assumed that the variance 2σ , is constant with 
respect to time, and equal for all colors and pixels, over the entire 
image, i.e. 
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( ) ( ){ }2, , ~N , , ,I i j k i j kμ σ  (1) 

The intensities are assumed to be independently distributed, with 
respect to all indices. The temporal constancy of the distribution 
parameters is assumed only over the recent time history. Using the 
N  most recent measurements at the t th frame, for a given pixel 

and color, the Maximum Likelihood Estimates (MLEs) – 

( )ˆ , ,i j kμ  and 2σ̂  – of the (unknown) true parameters – 

( ), ,i j kμ  and 2σ  – of the intensity distributions are computed 

using 
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Under the null hypothesis, the following statistics may then be 
formed, upon receiving the next frame: 
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They are however of limited practical use because 2σ  is 
unknown. Summing the (4) and (5) statistics above, over all 
K colors, for a given pixel, also results in chi-squared 

distributions with K  and ( )1K N −  degrees of freedom 

respectively, due to the reproductive property of chi-squared 

variables. Dividing the former sum by the latter sum cancels 2σ ; 
furthermore, dividing each by their respective degrees of freedom 
yields the desired F-distributed test statistic: 
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The tZ  test statistic is evaluated at every pixel forming a 

(monochrome) map and the null hypothesis is tested. A large tZ  

value means that an uncharacteristically large change in pixel 
intensity, for one or more colors, has been observed. Use of a 
general linear model permits the ‘normal’ behavior of each pixel to 
be adaptively determined; while the use of a test statistic with a 
known distribution allows the false alarm rate to be known and 
constant, when the assumptions underlying the null hypothesis are 
indeed true.      

In practice, a low-pass (moving average) spatial filter is used, 
to remove ‘speckle’ noise in the map (yielding tB ), which tends to 

‘smear’ features. The statistic is depleted for isolated large values 
of tZ  and accumulated when many large values are in close 

proximity. This filter makes it easier to identify discrete (moving) 
objects in the image and reduces the probability of producing 
multiple peaks on a single target. A threshold is selected to give 
the desired false-alarm rate, using the distribution of 

( ){ }F , 1K K N −  as a guide. All values above the threshold set 

the corresponding pixels in the change mask to true, forming 
contiguous ‘blobs’ in the change mask, due to each moving object. 
The maximum of each blob is identified (a peak) and every true 
pixel in the change mask is assigned to a peak. For each peak, the 
mean of each color in the underlying image is computed, using the 
pixels in the most recent frame, as selected by the change mask. 
The mean color values are appended to the measurement vector. 
The mean and variance of the image in the vicinity peak are also 
estimated and used to parameterize the local clutter model. 

 
3. TRACKER 

 
A pictorial representation of the JPDA event space, extended to 
include target visibility [5], for two tracks and two common peaks 
(i.e. gated by both tracks) is given in Figure 1. The ‘event space’ 
defines the physical set of real-world assumptions used within the 
track updater’s probabilistic Bayesian model.    

 
Legend: 
 

 
FIGURE 1. The JPDA event space. 
 

Feasible hypothesis. 

Physically infeasible hypothesis. 

Combined association gate. 

Target is visible and is detected. 

Target is visible but is not detected. 

Target is not visible. 

Peak is due to clutter. 

Target 1. 

Target 2. 

Peak is due to target 1. 

Peak is due to target 2. 
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Using the above diagram as a guide, the event probabilities, 
for two tracks, ‘competing’ for any number of common peaks, are 
generated using the following (approximate) expressions:  
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In the expressions above, subscripts 1 and 2 denote the 1st and 2nd 
tracks respectively, j  is the event index, N  is the number of 

peaks associated by a given track, β  is the PDA event probability, 

β ′  and β ′′ are the un-normalized and normalized pairwise JPDA 

event probabilities (respectively), and  is the kronecker delta 
function. The event probabilities of the 2nd track are computed by 
exchanging the subscripts. The physically infeasible events, 
corresponding to a single peak being due to different targets, are 
handled using the ‘exchange interaction’ term, 

( ) ( )
1 2 1 1 2 2j j j jβ β , in (8). 

This (pairwise) method was adopted because it is fast to 
implement and execute, relative to (complete) JPDA. Restricting 
the algorithm to (at most) two tracks and targets (i.e. the objects 
being tracked) greatly reduces the complexity of the JPDA 
implementation, yet it is sufficient to resolve most commonly 
arising cases of association ambiguity, even if more than two tracks 
and two targets are involved. The more general case, for an 
arbitrary number of tracks and targets is handled as follows: The 
pair of tracks (if any) with the greatest association ambiguity is 
identified, by examining the calculated β  values, and updated 

first using (7)-(9). Of the remaining tracks, the track pair (if any) 
with the next greatest association ambiguity is subsequently 
identified and processed, and so on, until all tracks have been 
updated. The PDA update is used when no association ambiguity 
exists. In terms of average tracking errors, this method is 
equivalent to PDA and JPDA for well-separated tracks; and 
superior to PDA and similar to JPDA for two (or possibly more) 
closely spaced tracks. To further reduce the processing load, only 
confirmed tracks are processed using the pairwise JPDA update. 
Tentative tracks are updated using the PDA update, using peaks 
that were not used to update the confirmed tracks. New tentative 
tracks are initiated on all peaks that were not used to update the 
confirmed and tentative tracks. 

The idea of state augmentation for the purpose of target feature 
tracking has been taken from [5] and [6], where SNR and 
curvature of radar peaks (respectively) are used as discriminatory 
target features. For video data, when the target color is different to 
other nearby targets and the background, this technique has the 
potential to reduce: the incidence of track divergence, false track 
rates, and track confirmation times. 

 
4. RESULTS 

 
In a field experiment, approximately 3000 frames of size 240x320, 
with 8bit RGB color, were acquired at a rate of 7.5Hz using a 
digital video camera, then post-processed using the detector and 
tracker described in the preceding sections. The data set contains 
the following: multiple maneuvering and closely-spaced moving 
targets (vehicles), targets occluded by vegetation, a small amount 
of camera shake, tree tops perturbed by a gentle breeze and moving 
clouds causing illumination to vary. A single example from this set 
is presented below in Figures 2 – 4. The selected footage contains 
3 vehicles simultaneously approaching, and converging upon, a 
‘T’-intersection (1 yields and 2 pass). As target 3 passes target 1, 
only one peak is produced by the detector. Figure 4 shows that the 
targets are successfully tracked through the intersection using the 
pairwise JPDA tracker. The upper left insert shows the moment of 
maximum association ambiguity, near the intersection, for the 
pairwise JPDA tracks. When the pairwise JPDA correction logic is 
disabled, the tracker reduces to PDA; in this case (upper right 
insert), track 3 is ‘seduced’ by the peaks supporting track 2; track 3 
remains at the intersection while its target continues down the 
road, i.e. the track diverges. 
 

 
FIGURE 2. Input image frame, tI . 

 
FIGURE 3. Detector output, ( )1010 log tB . 
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FIGURE 4. Tracker output. 
 

5. DISCUSSION 
 

The temporal detector used here does not yield peaks on object 
departure and object arrival, for low frame rates, as is the case 
when a difference map (between the current and previous images) 
is used. However, the temporal memory and the adaptive 
characteristics of this detector mean that the detection probability 
is reduced for a given target when it closely follows another target 
on the same trajectory, because the estimated variance is 
temporarily increased in the wake of the leading target (visible as 
dark smears behind the targets in Figure 3). The reliance of this 
detector on temporal statistics, rather than spatial statistics, results 
in higher spatial resolution, at the expense of a higher rate of false-
peak production. Its tendency to produce false peaks on moving 
background objects, and during sudden changes in illumination 
and camera parameters (pan, tilt, zoom, translation and aperture) 
is, however, effectively handled by the tracker, which suppresses 
tracks on uncorrelated peak sequences, keeping the overall system 
false-alarm rate low. The use of more computationally intensive 
correlation-based [18] and gradient-based [19] optical flow 
techniques is likely to yield fewer false peaks when camera 
parameters are changed. However, for a given processor, increased 
computational load means a lower real-time frame rate, which 
makes tracking closely-spaced moving targets in clutter a more 
difficult task, especially when they are maneuvering.  
 

6. CONCLUSION 
 

A change detector and a target tracker, suitable for processing 
moving objects in color image sequences have been presented. The 
detector identifies anomalies in the temporal color statistics of each 
pixel. The tracker employs a pairwise JPDA algorithm, which 
minimizes track divergence for closely spaced tracks and the 
problem of multiple tracks on the same target. The tracking filter is 
extended to consider target visibility – for automatic track 
initiation and termination – and target color features, for improved 
track continuity. 
 

7. REFERENCES 
 

[1] Schleher, D. Curtis (Ed.), Automatic Detection and Radar Data 
Processing, Artec House, Dedham, MA, 1980. 

[2] G.W. Pulford, “Taxonomy of multiple target tracking 
methods”, IEE Proc. Radar, Sonar and Navig., vol. 52, no. 5, pp. 
291-304, Oct. 2005. 
[3] Wei Zhang, Mingyu Cong and Liping Wang, “Algorithms for 
optical weak small targets detection and tracking: review”, in Proc. 
2003 Int. Conf. on Neural Networks and Signal Process., vol. 1, 
pp. 643-647, Dec. 2003. 
[4] P. Wei, J. Zeidler and W. Ku, “Analysis of multiframe target 
detection using pixel statistics”, IEEE Trans. Aerospace and 
Electronic Systems, vol. 31, no. 1, pp. 238-247, Jan. 1995. 
[5] S.B. Colegrove and S.J. Davey, “PDAF with multiple clutter 
regions and target models”, IEEE Trans. Aerospace and Electronic 
Systems, vol. 39, no. 1, pp. 110-124, Jan. 2003. 
[6] S.B. Colegrove, B. Cheung, “A peak detector that picks more 
than peaks”, in Proc. RADAR 2002, pp. 167-171, Oct. 2002. 
[7] T. Kirubarajan and Y. Bar-Shalom, “Low observable target 
motion analysis using amplitude information”, IEEE Trans. 
Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1367-1384, 
Oct. 1996. 
[8] D. Lerro and Y. Bar-Shalom, “Interacting multiple model 
tracking with target amplitude feature”, IEEE Trans. Aerospace 
and Electronic Systems, vol. 29, no. 2, pp. 494-509, Apr. 1993. 
[9] H.M. Shertukde and Y. Bar-Shalom, “Tracking of crossing 
targets with imaging sensors”, IEEE Trans. Aerospace and 
Electronic Systems, vol. 27, no. 4, pp. 582-592, Jul. 1991. 
[10] S.S. Blackman, R.J. Dempster and T.J. Broida, “Multiple 
hypothesis track confirmation for infrared surveillance systems”, 
IEEE Trans. Aerospace and Electronic Systems, vol. 29, no. 3, pp. 
810-824, Jul. 1993. 
[11] R.J. Radke, S. Andra, O. Al-Kofahi and B. Roysam, “Image 
change detection algorithms: a systematic survey”, IEEE Trans. 
Image Process., vol. 14, no. 3, pp. 294-307, Mar. 2005. 
[12] T.J. Patterson, D.M. Chabries and R.W Christiansen, 
“Detection algorithms for image sequence analysis”, IEEE Trans. 
Acoustics, Speech, and Signal Process, vol. 37, no. 9, pp. 1454-
1458, Sep. 1989. 
[13] Y. Bar-Shalom, T. Kirubarajan and X. Lin, “Probabilistic data 
association techniques for target tracking with applications to 
sonar, radar and EO sensors”, IEEE Aerospace and Electronic 
Systems Magazine, vol. 20, no. 8, pt. 2, pp. 37-56, Aug. 2005. 
[14] T. Fortmann, Y. Bar-Shalom and M. Scheffe, “Sonar tracking 
of multiple targets using joint probabilistic data association”, IEEE 
J. Oceanic Engineering, vol. 8, no. 3, pp. 173-184, Jul. 1983. 
[15] S.D. Blostein and H.S. Richardson, “A sequential detection 
approach to target tracking”, IEEE Trans. Aerospace and 
Electronic Systems, vol. 30, no. 1, pp. 197-212, Jan. 1994. 
[16] F. Fukushima, M. Ito, S. Tsujimichi, and Y. Kosuge, “Track-
initiation with the measurements of optical sensors by using MHT 
techniques”, in Proc. SICE 38th Annual Conference, pp. 1123-
1128, Jul. 1999. 
[17] L.J. Bain and M. Engelhardt, Introduction to Probability and 
Mathematical Statistics, 2nd Ed., California, Duxbury Press, 1992. 
[18] Teahyung Lee and D. Anderson, "Performance analysis of a 
correlation-based optical flow algorithm under noisy 
environments", in IEEE Int. Symp. on Circuits and Systems, 2006. 
(ISCAS 2006), pp. 21-24, May 2006. 
[19] M. Mesbah, "Gradient-based optical flow: a critical review", 
in Int. Symp. on Signal Processing and Its Applications, (ISSPA 
'99), vol. 1, pp. 467-470, Aug. 1999. 
 

I  1200


