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ABSTRACT
The minimization process of the Levenberg-Marquardt algorithm
(LMA) used in estimating the global motion parameters tends to be
very expensive computationally due to the involvement of all the
pixels of an image frame. We propose to reduce the computational
complexity of the LMA by using only a small portion of the image
data in two stages. In the rst stage, we seek to reduce the com-
plexity of the initial guess of the transformation parameters, which
is critical to the nal convergence of the algorithm. The complexity
of computing the initial guess can be lowered by using just a small
subset of the pixels in the calculation of the translational compo-
nents. The second stage of the LMA algorithm is to nd the nal
motion parameters in an iterative fashion, based on the coarse esti-
mate of the motion parameters obtained in the previous stage. The
LMA in this stage again operates on a subset of the pixels to further
reduce the overall computational complexity. Both analytical and
simulation results showed that the proposed partial-data algorithm
could achieve a speedup factor of over 25 for global motion estima-
tion (GME) with an eight-parameter perspective motion model on
several video sequences, without signi cant loss in the estimation
accuracy compared with the conventional LMA on the full image
data.

Index Terms— Global motion estimation (GME), Levenberg-
Marquardt algorithm, subset selection, perspective model, computa-
tional complexity

1. INTRODUCTION

The following eight-parameter perspective motion model was em-
ployed by MPEG-4 [1] to describe global motion by using the map-
ping functions x(i, j) and y(i, j).

x(i, j) =
m1i + m2j + m3

m7i + m8j + 1
, (1)

y(i, j) =
m4i + m5j + m6

m7i + m8j + 1
. (2)

In estimating the global motion parameters (m1, m2, . . . , m8), we
seek to minimize the following sum of squared errors.

E =
∑
all i

∑
all j

e2(i, j), (3)

where e(i, j) denotes the error of predicting a pixel located at (i, j)
of frame Ik+1, by using a pixel at location [x(i, j), y(i, j)] of the
previous frame Ik.

e(i, j) = Ik+1[i, j]− Ik[x(i, j), y(i, j)]. (4)

The Levenberg-Marquardt algorithm (LMA) [2][3] can be used to
nd the vector m = [m1, m2, ..., m8] that minimizes E in (3). In

LMA, the motion-parameter vector m is updated iteratively.

m(n+1) = m(n) + s(n), (5)

where s(n) is an update (at iteration n), which can be found by solv-
ing the following equation.

[
JT (m(n))J(m(n)) + μ(n)I

]
s(n) = −JT (m(n))r(m(n)),

(6)
where I is the identity matrix and μ is a nonnegative scalar parame-
ter. r(m) is a column vector de ned in (7).

r(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(1, 1)
e(1, 2)
e(1, 3)

...
e(2, 1)
e(2, 2)
e(2, 3)

...
all i, j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

And J(m) is the Jacobian matrix of r(m), as given in (8).

J(m) =

⎡
⎢⎢⎢⎣

∂e(1,1)
∂m1

∂e(1,1)
∂m2

...
∂e(1,2)

∂m1

∂e(1,2)
∂m2

...
∂e(1,3)

∂m1

∂e(1,3)
∂m2

...

... ... all i, j

⎤
⎥⎥⎥⎦ (8)

Each entry in the above matrix can be evaluated using the following
relations. [

∂e(i, j)

∂mk

]
=

[
∂e(i, j)

∂x

]
.

∂x

∂mk
, (9)

[
∂e(i, j)

∂mk

]
=

[
∂e(i, j)

∂y

]
.

∂y

∂mk
. (10)

For the eight-parameter perspective model, ∂x
∂mk

and ∂y
∂mk

can be
evaluated from (1) and (2). Below are some representative equations.

∂x

∂m1
=

i

D
,

∂x

∂m2
=

j

D
,

∂x

∂m7
= −xi

D
,

∂x

∂m8
= −xj

D

∂y

∂m5
=

j

D
,

∂y

∂m6
=

1

D
,

∂y

∂m7
= −yi

D
,

∂y

∂m8
= −yj

D
, (11)
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where D = m7i + m8j + 1. In addition, the partial derivatives in
(9) and (10) can be approximated as

[
∂e(i, j)

∂x

]
≈ (1− yf ) (Ik[xi + 1, yi]− Ik[xi, yi])

+yf (Ik[xi + 1, yi + 1]− Ik[xi, yi + 1]) . (12)

Similarly,
[

∂e(i, j)

∂y

]
≈ (1− xf ) (Ik[xi, yi + 1]− Ik[xi, yi])

+xf (Ik[xi + 1, yi + 1]− Ik[xi + 1, yi]) , (13)

where xi, yi are the integer parts and xf , yf are the fractional parts
of coordinates x and y, respectively.

To calculate r(m) and J(m) in (7) and (8), the LMA involve
all the pixels in an image frame. For each pixel, (9)-(13) must be
solved. Therefore, the LMA is very costly computationally. The
computational complexity of LMA could be reduced by operating
on a small subset of pixels. In this paper, we study how the subset
of pixels could be picked wisely with low pixel-selection overhead,
so that the resulting LMA based on partial data could still yield rea-
sonably accurate motion parameters. The remainder of the paper is
organized as follows. Section 2 provides a brief survey of pixel se-
lecton methods in the literature. In Section 3, a fast LMA algorithm
based on partial pixel data is proposed, followed by a detailed com-
putational complexity analysis of the proposed method in Section 4.
Simulations results are then presented in Section 5. The paper is
concluded in Section 6.

2. CHOOSING A SUBSET OF PIXELS FOR GME

The LMA can be accelerated if only a small subset of pixels is com-
puted. However, searching for a good subset is not free. In [5][6],
Keller and Averbuch proposed to use the gradient magnitude as the
selection criterion to speed up the GME. The gradient of a pixel (i, j)
can be obtained from (4) as follows

∇e(i, j) =

[
∂e(i, j)

∂m1
,
∂e(i, j)

∂m2
, . . . ,

∂e(i, j)

∂m8

]T

. (14)

Before pixel selection, the image is divided into several sub-regions.
After the gradient magnitude is calculated for each pixel, the top
10% pixels in a sub-region with the largest magnitudes will be se-
lected. While this selection method can lead to reduced overall com-
plexity, the overhead associated with such extra operations as gradi-
ent calculation, sorting and comparisons of magnitudes will offset a
lot of gains in complexity reduction allowed by working with fewer
pixels. On the other hand, a random subset selection method was
proposed by Dellaert and Collins [7] for image-based tracking. This
is a rather low-overhead method that can be applied in GME, where
a random bitmap can be generated to decide the positions of pixels
to be selected. However, since the positions of the selected pixels
are random, numerical instabilities might result.

In this paper, we propose to choose pixels based on some xed
patterns. Since neighboring pixels are very likely to experience the
same kind of motion, we can choose only one representative pixel
from a group of neighboring pixels to participate in calculating the
motion parameters. The representatives are chosen according to a
certain pattern (see Fig. 1). Obviously, the additional overhead of
this selection method is very low. Although similar patterns were
used in [8][9] for the purpose of reducing the complexity of block

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 1. Patterns of selected pixels (darkened). (a) Subsampling factor
is 4. (b) and (c) Subsampling factor is 2. (d) Subsampling factor is
64/9 ≈ 7.

distortion measure (BDM) for block-based local motion estimation,
we are not aware of any application of these subsampling patterns in
GME.

3. THE ALGORITHM

The LMA is a method based on gradient descent. To ensure conver-
gence in the presence of large displacements, a coarse estimate of
the translational component of the displacement is often performed
in the initial stage, where a 3-step search is typically used [1]. Re-
ducing the complexity of the initial step will certainly reduce the
overall complexity of the GME algorithm. To speed up the rough
estimation at the initial stage, we can include only part of the pixels
in the 3-step search. The selection of pixels is again based on xed
patterns. Since the initial estimate is supposed to be coarse, using
partial data in this stage will not affect too much the accuracy of the
motion parameters generated by the LMA, as demonstrated by the
simulation results in Section 5.

The overall LMA algorithm based on partial data can be sum-
marized as follows.

1. In the initial stage, obtain a coarse estimate of the transla-
tional components of the displacement by using the 3-step
search operating on a subset of pixels, where a subsampling
factor of 36 is adopted by selecting one pixel from a square
block of 36 pixels. After this initial stage is nished, the iter-
ations of LMA start.

2. A threshold T is initialized to a large number (e.g., 255), to
be used for outlier rejection, similar to that in [4], where 10%
of the chosen pixels with the largest errors are excluded.

3. For the entire image, pick one pixel at location (i, j) from ev-
ery square block of 25 pixels (following pattern (d) in Fig. 1).
Compute its corresponding position (x, y), by using (1) and
(2).

4. Compute the error e, using (4). If e < T , add the pixel’s
contribution to r(m) and J(m) in (7) and (8), respectively.
However, if this is the rst iteration, a histogram of |e| is built.

5. Solve the equation (6) and update the motion parameters by
using (5).

6. In the rst iteration only, T is computed to exclude the top
10% pixels from the histogram.

7. Steps 3, 4, and 5 are repeated for a maximum of 32 steps. The
process stops earlier if the update term s(n) in (5) is smaller
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than a threshold of 0.001 for the translational component and
0.00001 for the other motion parameters.

As suggested by the well-known Amdahl’s law in computing, in
order to reduce the overall complexity the GME, we need to reduce
the complexity of both the initial stage and the subsequent iterative
stages of the algorithm accordingly. A detailed complexity analysis
of the algorithm is given below.

4. COMPLEXITY ANALYSIS

Let CF ull and CPartial denote the complexities of LMA based on
the full set of pixels and based on a subset of pixels, respectively.
Then

CF ull = CInitialGuess + CIterative, (15)

where CInitialGuess and CIterative denote the complexities of the
initial stage and the subsequent stages of the algorithm, respectively.
Let NIter denote the number of iterations, NF ull be the total num-
ber of pixels in a frame, and CPixel be the number of arithmetic
operations required for each pixel, then (15) becomes

CF ull = CInitialGuess + NIterNF ullCPixel (16)

Assume that NIter = 10 (our simulations showed that 10 iterations
are quite suf cient for LMA to converge.). NF ull = rows × cols,
where rows and cols refer to the number of rows and columns of
a frame, respectively. For the CIF format, NF ull = 352 × 288 =
101, 376; and for the QCIF format, NF ull = 176× 144 = 25, 344.
If we denote the desired subsampling factor by SFDes, the actual
subsampling factor SFAct can be determined as

SFAct =
NF ull⌈

rows√
SFDes

⌉ ⌈
cols√
SFDes

⌉ . (17)

For example, if we desire the subsampling factor to be 25, the actual
factor will be 24.62 for CIF and 24.28 for QCIF, approximately. And
if the desired subsampling factor is 36, the actual one will be about
35.8 for a CIF image and about 35.2 for a QCIF image.

From (1)-(4) and (9)-(13), CPixel corresponds to 27 additions
and subtractions and 31 multiplications and divisions. The least
squares problem encountered in (6) can be solved by the House-
holder QR factorization [3], which requires about

(
mn2 − n3/3

)
additions and the same number of multiplications, where m is the
data size (e.g. m = 101, 376 for a full CIF image) and n is the
number of model parameters (n = 8 for the perspective model).
Our simulations in a typical setting showed that out of a total 7
seconds required by the LMA on a single frame, about 1.1 seconds
were spent on performing the initial 3-step search, whereas about 5.9
seconds were on the subsequent iterative stages of LMA. Thus the
following relation can be established empirically: CInitialGuess ≈
1.9NF ullCPixel. If follows that

CF ull ≈ 1.9NF ullCPixel + 10NF ullCPixel = 11.9NF ullCPixel.
(18)

For the fast LMA on partial data, we have

CPartial = CP
InitialGuess + CP

Iterative, (19)

CP
Iterative

CIterative
=

NIterNPartialCpixel

NIterNF ullCpixel
=

NPartial

NF ull
=

1

24.62
, (20)

in the case of video sequences in CIF format. If the 3-step search in
the initial stage is applied on the full set of pixels, then the overall
complexity becomes

CPartial ≈ 1.9NF ullCPixel + 10
24.62

NF ullCPixel

≈ 2.3NF ullCPixel,
(21)

and hence the speedup factor is

Speedup =
CF ull

CPartial
≈ 11.9NF ullCPixel

2.3NF ullCPixel
≈ 5.17. (22)

But if we want to speed up the 3-step search by using a desired sub-
sampling factor of 36, then CP

InitialGuess = NF ullCPixel/35.8 and

CPartial ≈ 1
35.8

NF ullCPixel + 10
24.62

NF ullCPixel

≈ 0.46NF ullCPixel,
(23)

which means a speedup factor of 5.02 over (21) can be achieved.
The overall speedup factor now becomes

Speedup =
CF ull

CPartial
≈ 11.9NF ullCpixel

0.46NF ullCpixel
≈ 25.87. (24)

5. RESULTS

To demonstrate the effectiveness of our approach, we choose four
video sequences (Carphone, Mobile, Tempete, and Tennis), with 250
frames from each of these sequences being used in the experiments.
The Peak Signal-to- Noise Ratio (PSNR), which is a measure of the
goodness of the prediction, and the computation times are used in
making the comparisons between the proposed algorithm (denoted
as certain pattern, or C

¯
P) and three other methods, including the

conventional LMA operating on a full set of pixels (denoted as full
size, or FS), LMA operating on a subset of pixels chosen according
to the gradient criteria (denoted as GR) [5], and LMA operating on a
subset of pixels chosen randomly (denoted as RC) [7]. The simula-
tions were conducted on a PC with 3.0 GHz Pentium IV processor,
512 MB RAM and the MS Windows XP OS. The source codes were
written in MATLAB.

Simulation results showed that, in the initial stage, applying the
3-step search on a very small subset of pixels (with one pixel being
selected from a block of 36 pixels) had very little effect on the accu-
racy of the motion parameters generated by the LMA. Furthermore,
reducing the complexity of the subsequent stages of the LMA by us-
ing a subset pattern with subsampling factor of 25 resulted in very
negligible losses in the accuracy of motion parameters achievable by
using the conventional LMA based on the full set of pixels.

Limited by the space, only the frame-by-frame PSNR values for
the Carphone sequence is shown in Figure 2, which indicates that
the degradations in PSNR caused by using only a subset of pixels in
these fast methods (GR, RC, and CP) are so small, that their curves
are almost indistinguishable from that of the FS method. The aver-
age PSNR values for the four video sequences are listed in Table 1.
Whether the three-step search in the initial stage operates on par-
tial data or not has literally no impact on the nal PSNR achieved.
However, it has signi cant impact on the overall computational com-
plexity, as can be seen by comparing the computation times needed
and the corresponding speedup factors listed in Table 2 and Table 3.
Note that the Carphone sequence is in the QCIF format, whereas
Mobile, Tempete, and Tennis sequences are in the CIF format. Thus
we expect that the computation time for the CIF sequences will be
about four times as long. Only 4% of the pixels were used in the
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Table 1. Average PSNR (in dB) of 250 frames from four video se-
quences. Note that the actual PSNR values are only shown for the FS
(full-data) method. For other methods, the degradations of their es-
timation accuracy (in dB) with respect to the FS method are shown,
for ease of comparison.

Sequence FS GR RC CP
Carphone 32.65 0.09 0.46 0.31
Mobile 26.09 0.01 0.05 0.06
Tempete 27.89 0.01 0.03 0.02
Tennis 27.42 0.31 0.37 0.14

three fast LMA methods (GR, RC, and CP). From gure 2 and Ta-
ble 1, we see that the proposed CP approach based on xed patterns
comes very close to the full size approach in terms of PSNR (less
than 0.1 dB in difference for sequences Mobile and Tempete). The
simulation results on the running times agree well with our analy-
sis, which shows that a speedup factor of about 25 on average could
be achieved by using the proposed CP method. In addition, the CP
method is generally superior to the RC (random choice) method in
terms of PSNR, and the CP method can achieve the highest speedup
factor among the three fast methods based on partial data.
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CP

Fig. 2. Accuracy (in terms of PSNR) of four GME methods on Car-
phone sequence.

6. CONCLUSION

We presented a fast GME method using LMA that operates on a
small subset of pixels. Partial data computation based on xed sub-
sampling patterns was found to be effective in reducing the complex-
ity of the initial 3-step search, and in speeding up the subsequent iter-
ative process in the LMA. We demonstrated that an overall speedup
factor of more than 25 was achievable over the conventional LMA
using a full set of pixels, without signi cant loss in the accuracy of
global motion estimation.

Table 2. Computation times (in seconds) of the four methods (over
250 frames) and their average speedup factors over the FS method.
The 3-step search in the rst stage is applied on a full set of pixels.

Sequence FS GR RC CP
Carphone 428.5 199.7 84.3 77.9
Mobile 1749.9 944.3 366.2 335.2
Tempete 1763.4 946.1 369.4 337.1
Tennis 1720.6 945.9 363.2 332.8

Avg. Speedup 1.00 1.92 4.84 5.28

Table 3. Computation times (in seconds) of the four methods (over
250 frames) and their average speedup factors over the FS method.
The 3-step search in the rst stage is applied on a small subset of
pixels (with a subsampling factor of 36).

Sequence FS GR RC CP
Carphone 382.6 142.6 21.6 19.5
Mobile 1504.2 715.9 87.4 64.2
Tempete 1527.1 716.5 87.0 68.8
Tennis 1483.6 715.6 86.4 63.7

Avg. Speedup 1.15 2.58 20.01 25.47
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