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ABSTRACT 
This paper presents a set of fast algorithm and VLSI 
architecture for HDTV-sized H.264 fractional motion 
estimation. To solve the long computational latency in 
HD-sized application, we propose to use the single iteration 
algorithm with only six search points. This single iteration 
method halves the cycle count of two iteration methods in 
previous approaches. Moreover, we propose to use 4x4 
Hadamard instead of 8x8 Hadamard as cost function for 
H.264 high profiles without significant video quality loss. 
By these techniques, the resulted architecture can save 20% 
of area and provide over 40% of throughput improvement 
than the previous work, and is able to support HDTV 
applications. 

Index Terms— H.264, motion estimation, high profile. 
 
 

1. INTRODUCTION 
The H.264/AVC video compression standard[1], jointly 

developed by ITU-T and ISO/IEC, provides better 
compression and is widely adopted in various video 
applications. In which, motion estimation (ME) contributes 
a lot in compression efficiency and also on the computation 
time. Thus, many fast algorithms and hardware architectures 
are proposed for integer pixel motion estimation (IME) to 
meet real-time requirement. With the computation reduction 
of IME, the fractional pixel motion estimation (FME) now 
occupies 45% of the run-time in inter prediction and thus 
needs speedup as well.  

Many fast FME algorithms are proposed to speed up the 
process such as the center based fractional pixel search 
(CBFPS)[3], the quadratic prediction based fractional ME 
algorithm[4], and the five candidates algorithm[5]. However, 
some algorithms [3][4] are software-oriented and exhibit 
irregular data flow and thus are not suitable for hardware 
design. Our previous work [5] is more suitable for hardware 
and can reduce the processing unit from nine to five to save 
hardware cost. However, from the hardware viewpoint it 
still suffers from long computation cycles as others. That is 
because it still takes two iterative search loops, one on 
half-pels and one on quarter-pels [6]. Thus, fast algorithms 

only reduce the processing element but do not reduce the 
cycle count in the hardware implementation. This problem 
will pose a strict limit on the HDTV sized applications since 
FME will take a lot of cycles and dominate the whole 
pipelining cycle time. Besides, all of these algorithms and 
designs do not consider the costly 8x8 SATD (sum of 
absolute transformed difference) computations in the high 
profile of H.264.  

To solve above problems, this paper presents a single 
iteration fast FME algorithm and its architecture suitable for 
HDTV and high profile applications. The proposed 
algorithm can complete the quarter-pixel precision motion 
search by only examining six search points in one search 
step instead of 17 search points in two search steps in the 
reference software[2]. Thus, we can reduce the number of 
SATD units since we only search 6 candidates. Besides, the 
cycle count is also halved by using only one search step. 
Furthermore, to avoid the costly 8x8 SATD computations 
with 8x8 Hadamard transform, we use the 4x4 Hadamard 
transform units. Thus, we can achieve smaller area and 
fewer cycle counts at the same time. 

The rest of the paper is organized as follows. In Section 
2, we introduce previous fractional-pel motion estimation 
algorithms and their drawbacks. In Section 3, we propose 
our single iteration fractional-pel motion estimation 
algorithm (SIFME) to overcome their drawbacks. In Section 
4, the corresponding hardware architecture for this 
algorithm is demonstrated, and the reduction of hardware 
cost and latency is introduced. Section 5 presents the results. 
Finally, we conclude the paper in Section 6.  

 
 

2. OVERVIEW OF RELATED WORK 
2.1   FME in the reference software 
Fig. 1 shows the search method applied in the reference 
software[2] with two search steps. In the first search step, it 
calculates the cost for each half pixel around the central 
integer pixel position (the rectangular point in the figure) 
and chooses the candidate with minimum cost as the search 
center for further refinement. In the second step, further 8 
candidates (the triangular points) around the previous search 
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center in quarter pixel position are examined. Thus, total 17 
search points are needed for fractional ME. Although this 
algorithm is suitable for hardware[6], it has two drawbacks. 
First, the search points in each step are still too many and 
thus results in nine processing units (PUs) for hardware 
implementation. The second drawback is that it needs two 
iterative search loops of interpolation and Hadamard 
transform to calculate the SATD cost. 

 
Fig. 1 FME algorithm in reference software 

2.2   Center-biased FME 
The center-biased FME[3] uses the information of 

predicted motion vector (pred_mv). It first calculates the 
fractional predicted motion vector(frac_pred_mv) :  

)%_(__ mvmvpredmvpredfrac     (1) 
where pred_mv here is defined as the fractional pixel unit. 
mv is the integer pixel motion vector after IME process, and 
mv is also in fractional pel unit. % is the mode operation, 

=4 in 1/4-pel case and =8 in 1/8-pel case. frac_pred_mv is 
the predicted fractional motion vector and indicates only 
fractional position. Then, it compares the cost at (0, 0) and 
frac_pred_mv and does the first diamond search around the 
lower cost one. After that, it refines around the best point 
until it is center-located. The concept behind [3] is that the 
probability of finding the motion vector around 
frac_pred_mv is higher than that around (0,0). However, 
this algorithm still needs at least two iterative loops and thus 
is not suitable for low latency hardware design.  
 
 

3. SIFME: A SINGLE INTERATION FRACTIONAL 
MOTION ESTIMATION ALGORITHM 

3.1   Proposed SIFME Algorithm 

frac_pred_mv

(0,0)

 
Fig. 2 The proposed SIFME algorithm flow on two square points, 

(0,0) and frac_pred_mv, and four triangle point around 
frac_pred_mv in one quarter-pel distance. 

Inspired by the center-biased FME, we modify it by 
searching six candidates in only one loop and no refined 
search as shown in Fig. 2. The six candidates includes (0, 0), 
frac_pred_mv and four diamond points around 
frac_pred_mv. (0, 0) is included for low texture and low 
motion sequences. More search points are placed around 
frac_pred_mv since the best fractional motion vector is 
more often around frac_pred_mv than around (0, 0).  
3.2   Analysis of prediction accuracy and search point 

Table 1 shows the prediction correctness compared with 
the algorithm in the reference software under different 
quantization parameter (QP). The prediction accuracy is 
defined as if the search fractional MV by the fast algorithm 
is the same as that in the full search algorithm of the 
reference software. This result shows that it can still have 
about 60~90 % of prediction accuracy though the proposed 
algorithm had ignored more than 88% search points.   
Table 1 hit rate of motion vector (mvx and mvy) compared to the 

full search FME algorithm 

CIF size, 300 frame, IPPP, ProfileIDC=100,  RDO off 
QP container foreman mobile stefan 
10 82.31% 61.80% 74.10% 62.20% 
16 85.11% 68.60% 76.30% 70.70% 
22 82.18% 70.97% 76.70% 75.70% 
28 90.21% 78.90% 79.00% 79.40% 
34 94.41% 86.40% 82.30% 82.83% 
40 94.71% 91.10% 86.10% 85.40% 

Table 2 shows the search point comparisons with other 
algorithms. The proposed algorithm needs the fewest search 
points compared with other search algorithms, 64% 
reduction compared to reference software. Besides, our 
algorithm does not need the second step search and saves 
the additional interpolation time in the second step. Table 3 
shows the comparisons for hardware implementation. The 
proposed algorithm searches only six candidates and needs 
only six PUs. Besides, with one loop design, our design just 
takes about only half of cycles compared to that with 
reference software[6] and fast algorithm in [5].  

Table 2 search point comparisons for different algorithms 

 search point 
JM [2] 17 
[4] 6+multiple diamond search (Total <=11) 
[3] 6 + multiple diamond search 
[5] 8~9 
proposed 6 

Table 3 comparisons of number of processing unit(PU) and 
number of iterative search steps 

 # of PU # of iterative search step 
[5] 5 2 
[6] 9 2 
proposed 6 1 
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3.3   SATD cost with 4x4 Hadamard for high profile  
In high profile of H.264, residual of block size larger 

than 8x8 are passed through 8x8 integer transform rather 
than 4x4 one. Thus, in the reference software, it adopts 8x8 
Hadamard transform for SATD calculation for block size 
larger than 8x8 [2]. Though Hadamard transform is greatly 
simplified, one 8x8 Hadamard transform unit still consumes 
about four times area than that of 4x4 one. For six PUs in 
our design, six 8x8 transform will be required and thus cost 
a lot of area cost.  

To solve this area problem, we propose to use 4x4 
Hadamard for all SATD calculation disregarding of the 
block size. Table 4 shows the simulation results of our 
algorithm with different SATD strategy. All the data are 
compared with the reference software. As shown in the table, 
the results with 4x4 and 8x8 Hadamard transform are 
similar except for low motion sequences like container at 
high QP situations. That is quite acceptable since the bit rate 
at that condition is quite low and any increase will be large 
in terms of that bit rate. As the 4x4 transform unit only 
consumes 25% area cost of 8x8 one, we choose to calculate 
SATD by 4x4 Hadamard transform that has similar 
performance and saves about 75% of area cost in PU and 
60% of area cost in the total FME module.  

 

Table 4 simulation results of SIFME with different SATD methods 
when compared to the reference software 

CIF size, 300 frame, IPPP, ProfileIDC=100, RDO off 
SIFME with 4x4 Hadamard transform 
 Container foreman Stefan 
QP PSN

R(dB) 
bit rate PSN

R(dB) 
bit rate PSN

R(dB) 
bit rate

10 -0.03 -0.75% -0.05 0.04% -0.04 0%
16 0 -0.28% -0.07 1.03% -0.05 0.30%
22 -0.03 -0.37% -0.09 0.89% -0.06 0.50%
28 0.03 0.46% -0.09 1.50% -0.07 1.24%
34 0.04 2.11% -0.12 1.35% -0.10 1.57%
40 -0.03 4.36% -0.08 -0.36% -0.13 1.02%
SIFME with 8x8 Hadamard transform 
 container foreman stefan 
QP PSN

R(dB) 
bit rate PSN

R(dB) 
bit rate PSN

R(dB) 
bit rate

10 -0.02 -0.19% -0.05 0.41% -0.03 0.31%
16 -0.03 -0.35% -0.06 1.33% -0.04 0.68%
22 -0.01 -0.25% -0.07 1.42% -0.06 1.06%
28 0.03 0.19% -0.09 1.22% -0.07 1.86%
34 -0.02 0.72% -0.12 -0.54% -0.08 1.97%
40 0.02 2.53% -0.11 -2.77% -0.11 -0.04%

 
 
 

4. HARDWARE ARCHITECTURE 
Fig. 3 shows the proposed hardware architecture. The 

input data are first interpolated by the interpolation unit for 
half and quarter pixels of one 4x4 block. Then these data are 

computed with the current block data with the six 4x4 block 
PUs. Each PU is in charge of residual generation and 4x4 
Hadamard transform. All larger sized block are decomposed 
into 4x4 block for processing. Then the residual cost 
combining with MV cost is sent to the Compare unit to find 
the best one and stored in SB_buffer. 

The total cycle count is 1002 cycles for one MB 
processing. With the single step algorithm, the total cycle 
count is just 40% of that in [6]. 
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Fig. 3 The proposed hardware architecture 

 
 
 

5. SIMULATION & SYNTHESIS RESULTS 
 

Table 5 shows the simulation results of the proposed 
SIFME with 4x4 Hadamard transform algorithm compared 
with that of reference software for 720p sequences. As our 
hardware architecture is used for high profile and HDTV 
size video, we care more about the performance on 720p 
size sequences rather than that on CIF size sequences. 
Comparing the results of Table 4 and Table 5, we can find 
that our algorithm has better performance on large size 
sequences than CIF size sequences, which matches our goal. 
We can also find that our algorithm greatly reduces 
computation time of FME. The proposed algorithm can 
speedup the FME part by up to 4 times compared to the 
reference software. The reason is due to the reduction of 
search candidates, and 4x4 instead of 8x8 Hadamard 
transform.  

I ­ 1187



 

 
 
The proposed FME architecture is synthesized with 

0.18um technology at 70MHz and the details of each block 
are listed in Table 6. It can be found that the six PUs occupy 
the largest area, and thus reducing the number of PUs can 
significantly reduce the area cost. Compared to [6] as shown 
in Table 7, we save 20% of area cost due to fewer number of 
PUs. Besides, our design can process 71.3k MB/sec in 
70MHz clock rate, which is sufficient for HD sized 
applications. We can achieve more than 40% of throughput 
improvement with lower clock rate than that in [6] because 
we only take one search step. Most of all, our hardware 
architecture is designed for H.264/AVC high profile that is 
not supported in [6]. 
 
 

6. CONCLUSION 
 

In this paper, we propose a simple single iteration fast 
FME and its architecture for HD-sized and high profile 
applications. With the presented techniques, we can save 
20% of area cost and provides 40% higher of throughput 
compared with previous approaches. Therefore, with 
processing rate of 71.3K MBs/sec, the design is suitable for 
the HDTV applications or other cases which needs fast 
fractional motion estimation. 
 

Table 6 synthesis result of the proposed architecture 

 Gate Count 
Control 303 
MV_COST 1278 
Interpolation unit 19049 
Selection unit 10525 
4x4 Block PU 25807 
Compare unit 3016 
SB_buffer 2089 

Total 62260 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7 comparison between the proposed architecture and other 
hardware architecture 

 [6] proposed
bit rate 0 -0.24% 
PSNR(dB) 0 -0.0438 

clock 100MHz 70MHz 
Gate count 79372 62260 
MB/sec 50k 71.3k 
Cycle/MB 1648 1002 
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Table 5 PSNR & bit rate comparison for different 720p sequences and QPs. Speed up is only the performance in fractional ME part 

720p, 100 frames, IPPP, ProfileIDC=100, RDO off 

 mobcal parkrun shields stockholm 
QP PSNR

(dB) 
bit rate speed

 up 
PSNR

(dB) 
bit rate speed 

up 
PSNR

(dB) 
bit rate speed  

up 
PSNR

(dB) 
bit rate speed 

up 
10 -0.04 -0.77% 4.0 -0.02 -0.77% 3.9 -0.04 -0.42% 3.6 -0.04 0.05% 3.8
16 -0.04 -1.07% 3.6 -0.04 -0.99% 3.7 -0.08 -1.27% 3.7 -0.08 -0.86% 3.6
22 -0.01 -1.08% 4.0 -0.05 -1.42% 3.9 -0.04 -1.54% 3.9 -0.05 -1.50% 3.7
28 -0.01 -0.36% 3.9 -0.04 -0.63% 3.9 -0.02 -0.36% 3.6 -0.02 -0.71% 3.8
34 -0.05 3.20% 3.9 -0.05 -0.14% 3.8 -0.03 0.30% 3.6 -0.01 -1.87% 3.7
40 -0.06 4.28% 3.7 -0.04 -0.70% 4.1 -0.01 -7.05% 3.5 0 -8.86% 3.7
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