
SIFME: A SINGLE ITERATION FRACTIONAL-PEL MOTION
ESTIMATION ALGORITHM AND ARCHITECTURE FOR

HDTV SIZED H.264 VIDEO CODING

Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang
Institute of Electronics

National Chiao-Tung University
HsinChu, Taiwan

{tykuo,yklin,tschang}@twins.ee.nctu.edu.tw

ABSTRACT
This paper presents a set of fast algorithm and VLSI
architecture for HDTV-sized H.264 fractional motion
estimation. To solve the long computational latency in
HD-sized application, we propose to use the single iteration
algorithm with only six search points. This single iteration
method halves the cycle count of two iteration methods in
previous approaches. Moreover, we propose to use 4x4
Hadamard instead of 8x8 Hadamard as cost function for
H.264 high profiles without significant video quality loss.
By these techniques, the resulted architecture can save 20%
of area and provide over 40% of throughput improvement
than the previous work, and is able to support HDTV
applications.

Index Terms— H.264, motion estimation, high profile.

1. INTRODUCTION
The H.264/AVC video compression standard[1], jointly

developed by ITU-T and ISO/IEC, provides better
compression and is widely adopted in various video
applications. In which, motion estimation (ME) contributes
a lot in compression efficiency and also on the computation
time. Thus, many fast algorithms and hardware architectures
are proposed for integer pixel motion estimation (IME) to
meet real-time requirement. With the computation reduction
of IME, the fractional pixel motion estimation (FME) now
occupies 45% of the run-time in inter prediction and thus
needs speedup as well.

Many fast FME algorithms are proposed to speed up the
process such as the center based fractional pixel search
(CBFPS)[3], the quadratic prediction based fractional ME
algorithm[4], and the five candidates algorithm[5]. However,
some algorithms [3][4] are software-oriented and exhibit
irregular data flow and thus are not suitable for hardware
design. Our previous work [5] is more suitable for hardware
and can reduce the processing unit from nine to five to save
hardware cost. However, from the hardware viewpoint it
still suffers from long computation cycles as others. That is
because it still takes two iterative search loops, one on
half-pels and one on quarter-pels [6]. Thus, fast algorithms

only reduce the processing element but do not reduce the
cycle count in the hardware implementation. This problem
will pose a strict limit on the HDTV sized applications since
FME will take a lot of cycles and dominate the whole
pipelining cycle time. Besides, all of these algorithms and
designs do not consider the costly 8x8 SATD (sum of
absolute transformed difference) computations in the high
profile of H.264.

To solve above problems, this paper presents a single
iteration fast FME algorithm and its architecture suitable for
HDTV and high profile applications. The proposed
algorithm can complete the quarter-pixel precision motion
search by only examining six search points in one search
step instead of 17 search points in two search steps in the
reference software[2]. Thus, we can reduce the number of
SATD units since we only search 6 candidates. Besides, the
cycle count is also halved by using only one search step.
Furthermore, to avoid the costly 8x8 SATD computations
with 8x8 Hadamard transform, we use the 4x4 Hadamard
transform units. Thus, we can achieve smaller area and
fewer cycle counts at the same time.

The rest of the paper is organized as follows. In Section
2, we introduce previous fractional-pel motion estimation
algorithms and their drawbacks. In Section 3, we propose
our single iteration fractional-pel motion estimation
algorithm (SIFME) to overcome their drawbacks. In Section
4, the corresponding hardware architecture for this
algorithm is demonstrated, and the reduction of hardware
cost and latency is introduced. Section 5 presents the results.
Finally, we conclude the paper in Section 6.

2. OVERVIEW OF RELATED WORK
2.1 FME in the reference software
Fig. 1 shows the search method applied in the reference
software[2] with two search steps. In the first search step, it
calculates the cost for each half pixel around the central
integer pixel position (the rectangular point in the figure)
and chooses the candidate with minimum cost as the search
center for further refinement. In the second step, further 8
candidates (the triangular points) around the previous search

I ­ 11851­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

center in quarter pixel position are examined. Thus, total 17
search points are needed for fractional ME. Although this
algorithm is suitable for hardware[6], it has two drawbacks.
First, the search points in each step are still too many and
thus results in nine processing units (PUs) for hardware
implementation. The second drawback is that it needs two
iterative search loops of interpolation and Hadamard
transform to calculate the SATD cost.

Fig. 1 FME algorithm in reference software

2.2 Center-biased FME
The center-biased FME[3] uses the information of

predicted motion vector (pred_mv). It first calculates the
fractional predicted motion vector(frac_pred_mv) :

)%_(__ mvmvpredmvpredfrac (1)
where pred_mv here is defined as the fractional pixel unit.
mv is the integer pixel motion vector after IME process, and
mv is also in fractional pel unit. % is the mode operation,

=4 in 1/4-pel case and =8 in 1/8-pel case. frac_pred_mv is
the predicted fractional motion vector and indicates only
fractional position. Then, it compares the cost at (0, 0) and
frac_pred_mv and does the first diamond search around the
lower cost one. After that, it refines around the best point
until it is center-located. The concept behind [3] is that the
probability of finding the motion vector around
frac_pred_mv is higher than that around (0,0). However,
this algorithm still needs at least two iterative loops and thus
is not suitable for low latency hardware design.

3. SIFME: A SINGLE INTERATION FRACTIONAL
MOTION ESTIMATION ALGORITHM

3.1 Proposed SIFME Algorithm

frac_pred_mv

(0,0)

Fig. 2 The proposed SIFME algorithm flow on two square points,

(0,0) and frac_pred_mv, and four triangle point around
frac_pred_mv in one quarter-pel distance.

Inspired by the center-biased FME, we modify it by
searching six candidates in only one loop and no refined
search as shown in Fig. 2. The six candidates includes (0, 0),
frac_pred_mv and four diamond points around
frac_pred_mv. (0, 0) is included for low texture and low
motion sequences. More search points are placed around
frac_pred_mv since the best fractional motion vector is
more often around frac_pred_mv than around (0, 0).
3.2 Analysis of prediction accuracy and search point

Table 1 shows the prediction correctness compared with
the algorithm in the reference software under different
quantization parameter (QP). The prediction accuracy is
defined as if the search fractional MV by the fast algorithm
is the same as that in the full search algorithm of the
reference software. This result shows that it can still have
about 60~90 % of prediction accuracy though the proposed
algorithm had ignored more than 88% search points.
Table 1 hit rate of motion vector (mvx and mvy) compared to the

full search FME algorithm

CIF size, 300 frame, IPPP, ProfileIDC=100, RDO off
QP container foreman mobile stefan
10 82.31% 61.80% 74.10% 62.20%
16 85.11% 68.60% 76.30% 70.70%
22 82.18% 70.97% 76.70% 75.70%
28 90.21% 78.90% 79.00% 79.40%
34 94.41% 86.40% 82.30% 82.83%
40 94.71% 91.10% 86.10% 85.40%

Table 2 shows the search point comparisons with other
algorithms. The proposed algorithm needs the fewest search
points compared with other search algorithms, 64%
reduction compared to reference software. Besides, our
algorithm does not need the second step search and saves
the additional interpolation time in the second step. Table 3
shows the comparisons for hardware implementation. The
proposed algorithm searches only six candidates and needs
only six PUs. Besides, with one loop design, our design just
takes about only half of cycles compared to that with
reference software[6] and fast algorithm in [5].

Table 2 search point comparisons for different algorithms

 search point
JM [2] 17
[4] 6+multiple diamond search (Total <=11)
[3] 6 + multiple diamond search
[5] 8~9
proposed 6

Table 3 comparisons of number of processing unit(PU) and
number of iterative search steps

 # of PU # of iterative search step
[5] 5 2
[6] 9 2
proposed 6 1

I ­ 1186

3.3 SATD cost with 4x4 Hadamard for high profile
In high profile of H.264, residual of block size larger

than 8x8 are passed through 8x8 integer transform rather
than 4x4 one. Thus, in the reference software, it adopts 8x8
Hadamard transform for SATD calculation for block size
larger than 8x8 [2]. Though Hadamard transform is greatly
simplified, one 8x8 Hadamard transform unit still consumes
about four times area than that of 4x4 one. For six PUs in
our design, six 8x8 transform will be required and thus cost
a lot of area cost.

To solve this area problem, we propose to use 4x4
Hadamard for all SATD calculation disregarding of the
block size. Table 4 shows the simulation results of our
algorithm with different SATD strategy. All the data are
compared with the reference software. As shown in the table,
the results with 4x4 and 8x8 Hadamard transform are
similar except for low motion sequences like container at
high QP situations. That is quite acceptable since the bit rate
at that condition is quite low and any increase will be large
in terms of that bit rate. As the 4x4 transform unit only
consumes 25% area cost of 8x8 one, we choose to calculate
SATD by 4x4 Hadamard transform that has similar
performance and saves about 75% of area cost in PU and
60% of area cost in the total FME module.

Table 4 simulation results of SIFME with different SATD methods
when compared to the reference software

CIF size, 300 frame, IPPP, ProfileIDC=100, RDO off
SIFME with 4x4 Hadamard transform
 Container foreman Stefan
QP PSN

R(dB)
bit rate PSN

R(dB)
bit rate PSN

R(dB)
bit rate

10 -0.03 -0.75% -0.05 0.04% -0.04 0%
16 0 -0.28% -0.07 1.03% -0.05 0.30%
22 -0.03 -0.37% -0.09 0.89% -0.06 0.50%
28 0.03 0.46% -0.09 1.50% -0.07 1.24%
34 0.04 2.11% -0.12 1.35% -0.10 1.57%
40 -0.03 4.36% -0.08 -0.36% -0.13 1.02%
SIFME with 8x8 Hadamard transform
 container foreman stefan
QP PSN

R(dB)
bit rate PSN

R(dB)
bit rate PSN

R(dB)
bit rate

10 -0.02 -0.19% -0.05 0.41% -0.03 0.31%
16 -0.03 -0.35% -0.06 1.33% -0.04 0.68%
22 -0.01 -0.25% -0.07 1.42% -0.06 1.06%
28 0.03 0.19% -0.09 1.22% -0.07 1.86%
34 -0.02 0.72% -0.12 -0.54% -0.08 1.97%
40 0.02 2.53% -0.11 -2.77% -0.11 -0.04%

4. HARDWARE ARCHITECTURE
Fig. 3 shows the proposed hardware architecture. The

input data are first interpolated by the interpolation unit for
half and quarter pixels of one 4x4 block. Then these data are

computed with the current block data with the six 4x4 block
PUs. Each PU is in charge of residual generation and 4x4
Hadamard transform. All larger sized block are decomposed
into 4x4 block for processing. Then the residual cost
combining with MV cost is sent to the Compare unit to find
the best one and stored in SB_buffer.

The total cycle count is 1002 cycles for one MB
processing. With the single step algorithm, the total cycle
count is just 40% of that in [6].

Adaptive Search Pattern
Selection Unit

Compare

Interpolation Unit

Control

Mode Ref frame
data

Original MB
data

4x4
Block

PU

4x4
Block

PU

4x4
Block

PU

4x4
Block

PU

Total SATD Ref Pixel & Residualfrational MV

MV
COST

MVP IMV

4x4
Block

PU

4x4
Block

PU

SB_buffer

Fig. 3 The proposed hardware architecture

5. SIMULATION & SYNTHESIS RESULTS

Table 5 shows the simulation results of the proposed
SIFME with 4x4 Hadamard transform algorithm compared
with that of reference software for 720p sequences. As our
hardware architecture is used for high profile and HDTV
size video, we care more about the performance on 720p
size sequences rather than that on CIF size sequences.
Comparing the results of Table 4 and Table 5, we can find
that our algorithm has better performance on large size
sequences than CIF size sequences, which matches our goal.
We can also find that our algorithm greatly reduces
computation time of FME. The proposed algorithm can
speedup the FME part by up to 4 times compared to the
reference software. The reason is due to the reduction of
search candidates, and 4x4 instead of 8x8 Hadamard
transform.

I ­ 1187

The proposed FME architecture is synthesized with

0.18um technology at 70MHz and the details of each block
are listed in Table 6. It can be found that the six PUs occupy
the largest area, and thus reducing the number of PUs can
significantly reduce the area cost. Compared to [6] as shown
in Table 7, we save 20% of area cost due to fewer number of
PUs. Besides, our design can process 71.3k MB/sec in
70MHz clock rate, which is sufficient for HD sized
applications. We can achieve more than 40% of throughput
improvement with lower clock rate than that in [6] because
we only take one search step. Most of all, our hardware
architecture is designed for H.264/AVC high profile that is
not supported in [6].

6. CONCLUSION

In this paper, we propose a simple single iteration fast
FME and its architecture for HD-sized and high profile
applications. With the presented techniques, we can save
20% of area cost and provides 40% higher of throughput
compared with previous approaches. Therefore, with
processing rate of 71.3K MBs/sec, the design is suitable for
the HDTV applications or other cases which needs fast
fractional motion estimation.

Table 6 synthesis result of the proposed architecture

 Gate Count
Control 303
MV_COST 1278
Interpolation unit 19049
Selection unit 10525
4x4 Block PU 25807
Compare unit 3016
SB_buffer 2089

Total 62260

Table 7 comparison between the proposed architecture and other
hardware architecture

 [6] proposed
bit rate 0 -0.24%
PSNR(dB) 0 -0.0438

clock 100MHz 70MHz
Gate count 79372 62260
MB/sec 50k 71.3k
Cycle/MB 1648 1002

7. REFERENCES
[1] Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification (ITU-T Rec. H.264/ ISO/
IEC 14496-10 AVC), Mar. 2003.

[2] Joint Video Team Reference Software JM9.8.
[3] Libo Yang, Keman Yu, Jiang Li, and Shipeng Li,

“Prediction-based Directional Fractional Pixel Motion
Estimation for H.264 Video Coding”, in Proc. IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP2005), Vol. 2, pp.901 – pp. 904, 2005.

[4] Jing-Fu Chang, Jin-Jang Leou, "A Quadratic Prediction Based
Fractional-Pixel Motion Estimation Algorithm for H.264," in
Proc. Seventh IEEE International Symposium on Multimedia
(ISM'05) pp. 491-498, 2005.

[5] Yu-Jen Wang, Chao-Chung Cheng, and Tian-Sheuan Chang,
"A Fast Fractional Pel Motion Estimation Algorithm for
H.264/AVC", in Proc. International Conference on Circuit
and System (ISCAS) 2006

[6] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen,
"Fully utilized and reusable architecture for fractional motion
estimation of H.264/AVC" in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP2005), vol. 4. pp.9-12, 2004.

Table 5 PSNR & bit rate comparison for different 720p sequences and QPs. Speed up is only the performance in fractional ME part

720p, 100 frames, IPPP, ProfileIDC=100, RDO off

 mobcal parkrun shields stockholm
QP PSNR

(dB)
bit rate speed

 up
PSNR

(dB)
bit rate speed

up
PSNR

(dB)
bit rate speed

up
PSNR

(dB)
bit rate speed

up
10 -0.04 -0.77% 4.0 -0.02 -0.77% 3.9 -0.04 -0.42% 3.6 -0.04 0.05% 3.8
16 -0.04 -1.07% 3.6 -0.04 -0.99% 3.7 -0.08 -1.27% 3.7 -0.08 -0.86% 3.6
22 -0.01 -1.08% 4.0 -0.05 -1.42% 3.9 -0.04 -1.54% 3.9 -0.05 -1.50% 3.7
28 -0.01 -0.36% 3.9 -0.04 -0.63% 3.9 -0.02 -0.36% 3.6 -0.02 -0.71% 3.8
34 -0.05 3.20% 3.9 -0.05 -0.14% 3.8 -0.03 0.30% 3.6 -0.01 -1.87% 3.7
40 -0.06 4.28% 3.7 -0.04 -0.70% 4.1 -0.01 -7.05% 3.5 0 -8.86% 3.7

I ­ 1188

