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ABSTRACT 

Pattern-based block motion estimation (PBME) algorithm 
has been widely adopted in digital video coding systems. 
Due to the large characteristics variations among video 
sequences, adaptive PBME algorithms that switch search 
patterns have been proposed. However, most adaptive 
search algorithms are heuristically designed based on the 
experimental data. In this paper, we like to construct an 
analytical model and explore the problem systematically. 
Also, we propose an adaptive genetic pattern search 
algorithm (AGPS). Simulations show that the proposed 
AGPS in average outperforms the existing popular search 
algorithms quite significantly in speed, while the peak 
signal noise ration (PSNR) quality is maintained at the same 
level. 

Index Terms— adaptive pattern selection, genetic 
algorithm, pattern based block motion estimation, motion 
estimation, video compression. 
 

1. INTRODUCTION 
Block-based motion estimation (BME) has been a very 
popular tool in the modern video coding systems. According 
to [1], fast BME algorithms can be classified into two main 
categories, namely, reduction of the number of search 
(checking) points, and reduction of computational 
complexity in calculating the block matching cost for each 
search point. This paper focuses on the algorithms in the 
first category. 

To reduce the number of checking points, a BME 
algorithm typically use the following techniques: 1) an 
operative threshold for terminating the search process [2], 2) 
the selection of proper starting points by using various 
predictors [3], and 3) an effective set of search patterns 
[2][4][5]. With the help of these techniques, recent BME 
algorithms can effectively reduce computation and keep the 
desired level of quality. The first and second sets of 
techniques rely on the high correlation of data among intra 
or inter frames. And the third techniques (search patterns) 
work on the fact that the matching-cost surface is nearly 
monotonic. Among these techniques, the search patterns 
have a decisive influence on the performance of a search 
algorithm especially when the data correlation is low. 

Researchers often design search patterns intuitively 
based the experimental motion vector (MV) data. But, 
because the characteristic of an image sequence varies quite 
drastically along the time axis, one single search pattern 
often cannot match the different characteristics of the entire 
sequence. Thus, some studies proposed adaptive pattern-
based motion estimation (PBME) methods by switching 
search patterns to fit the video content [6]. However, most 
proposals are heuristic ideas developed based on empirical 
data. In the following paragraphs, we like to construct an 
analytical model and explore the problem systematically. 

Based on our proposed model for PBME, we analyze the 
performance of various search algorithms and propose a 
practical threshold for search pattern selection in Section 2. 
Based on the analysis, we propose an adaptive genetic 
pattern search in Section 3. Experiment results are shown in 
Section 4. And conclusions are given in Section 5. 

 
2. SELECTION OF SEARCH PATTERNS 

In this section, we first construct a mathematical model of 
PBME to unveil the relationship between the search pattern, 
the video sequence, and the average number of search 
points. Then, we compare the performance of two popular 
search patterns. Based on our observations, we propose a 
practical threshold for adaptive selection of search patterns. 
2.1. Modeling of Pattern-based Motion Estimation 

2
,

1 ),(),( CyxWFyxSCASP
Ayx

SAFS
 

(1)

Ayx yx

yx
FS

yx

yx
yxS

)','(
3/53/5

3/53/5

'
1

'
1

11

),(
 

(2)

In [7], we present a mathematical model (1) to predict the 
average number of search points (ASP) produced by a 
PBME. This model consists two components: a statistical 
probability distribution function SFS(x,y) of MV (2), which 
is picture-dependent, and  the minimal number of search 
points, WFSA(x,y), (called weighting function) produced by a 
search algorithm (SA). In (1), x and y are relative 
coordinates with respect to (w.r.t.) the predicted motion 
vector (PMV). And the parameters (C1, C2) are obtained by 
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training methods. Note that C1 is always positive, because 
ASP and the sum of products of SFS(x,y) and WFSA(x,y) are 
always positively correlated. In (2), (x,y) and (x’,y’) are 
relative coordinates w.r.t PMV, and A is the search area. 
The parameters ( x, y) of SFS(x,y) are obtained by numerical 
methods such that the variances of SFS(x,y) match those of 
MVs acquired by applying the full search to a specific 
sequence. In other words, ( x, y) are functions of MV 
variances. 

The weighting function of a search algorithm can be 
obtained by analyzing the search procedure of an algorithm. 
In Fig. 1, the weighting functions of the well-known 
enhanced hexagonal search (EHS) [4] and easy rhombus 
pattern search (ERPS) are shown. The ERPS described here 
is the adaptive rood pattern search [2] without using various 
predictors. The value on a contour represents the minimal 
number of search points for a search algorithm to move 
from the origin to a point (location) on the contour. The 
weighting function is a discrete function, and the data points 
exist only on the integer coordinates. For the ease of 
visualization, the data points are interpolated to form 
continuous contour lines. 
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Fig. 1. The Weighting Function of EHS and ERPS. 

We suggest two training methods to decide the 
parameters (C1, C2) [7]. In the first method, we apply a fixed 
search algorithm to a set of training sequences to compute 
the parameters. Therefore, we may predict the ASP of a new 
sequence. In the second method, the parameters are 
acquired by applying a set of search algorithms (training 
algorithms) to a specific sequence. Thus, we can predict the 
ASP of a new search algorithm. Method 2 is used in this 
paper. 
2.2. Performance Comparison of Search Patterns 
Using our model, when we apply two search algorithms, 
SA1 and SA2, to a specific sequence, the difference in ASP 
is shown in (3). Because WFSA1 and WFSA2 are fixed, and 
SFS is a function of the MV variances, it is clear that DASP is 
a function of MV variances. 

We define the performance index (IASP) by (4). The IASP 
between ERPS and EHS is shown in Fig. 2(a). The X-axis 
denotes the MV variance in the horizontal direction, and the 
Y-axis denotes that in the vertical direction. When IASP > 0, 
ERPS outperforms EHS in terms of ASP, and when IASP < 0, 
EHS is better. When the sequence differs, only the 
magnitude of C1 varies, not the sign. Consequently, it is 

easy to decide which search algorithm is better, as long as 
the MV variances of a video sequence are known. The 
threshold is the variances pair at which IASP equals zero.  
Although this threshold, IASP=0, is a curve, we can use a 
straight line (5)  to approximate (4) as shown in Fig. 2(a). 
That is, we use (5) to decide which algorithm to use, 
wherein P, Q, and R are determined by applying numerical 
methods to data.  
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Fig. 2. The IASP between ERPS and EHS, and between 

GRPS and GEHS. 

In addition, Fig. 2(a) rectifies a commonly accepted 
concept that small search patterns are more suitable for ‘low 
motion sequences’, while large search patterns are for ‘high 
motion sequences’. To be exact, the small patterns are more 
suitable for ‘low MV variance’ sequences, since the ASP 
performance of a search algorithm is determined by the MV 
variances. 

 
3. AN ADAPTIVE GENETIC PATTERN SEARCH 

Adopting the threshold defined by (5), we propose an 
adaptive genetic pattern search algorithm (AGPS), which 
uses two search pattern sets, the genetic rhombus search 
patterns (GRPS) and the genetic enhanced hexagonal search 
patterns (GEHS).  

The flow chart of GRPS is shown in Fig. 3 and its search 
patterns are shown in Fig. 5. In step 2 (S2), it checks one of 
the search points in Fig. 5(a), and in step 3B (S3B), it 
examines if all the points in Fig. 5(b) have been checked. 
The flow chart of GEHS is shown in Fig. 4 and its 
associated search patterns are shown in Fig. 6. In step 2 (S2), 
it checks one of the search points in Fig. 6(a). In step 3B 
(S3B), it examines if all the points in Fig. 6(b) are checked. 
In step 4 (S4), six block matching costs are computed using 
the two–point patterns in the hexagonal pattern as indicated 
by Groups I to VI in Fig. 6(b). Then, determine which 
search pattern (direction) to be used next. When the smallest 
cost is in Groups II, III, V, and VI in Fig. 6(b), two extra 
points are checked, as exemplified in Fig. 6 (c). Or, if the 
smallest cost is in Groups I and IV in Fig. 6(b), three extra 
points are checked, as exemplified in Fig. 6(d). 
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Fig. 3 Flow chart of GRPS 

Fig. 4 Flow chart of GEHS 

As shown in Fig. 7, the weighting functions of GRPS 
and GEHS are smaller than those of ERPS and EHS in Fig. 
1, respectively. Thus, we adopt GRPS and GEHS as our 
search patterns. Combining GRPS and GEHS, the flow 
chart of AGPS is shown in Fig. 8. Herein, the standard 
deviations of MV are obtained from the MVs in the 
previous frame. And the threshold can be thus determined 
by examining the IASP diagram in Fig. 2(b). We use standard 
deviation instead of variance, because IASP=0 curve in Fig. 
2(b) is better approximated by a straight line in the standard 

deviation domain. Thus, (5) is modified to (6). We choose 
A=B=1 and TH=12 in our simulations. 
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Fig. 5 Search patterns of GRPS 
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Fig. 6 Search Patterns of GEHS 
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Fig. 7 The Weighting Function of GEHS and GRPS 

 
Fig. 8 Flow Chart of AGPS 

4. EXPERIMENTAL RESULTS 
To test the proposed algorithm, four sequences with 
different MV variances (denoted as ‘1X’) are tested under 
the setting given in Table I. To test the extreme cases, we 
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generate four new test sequences consisting of the odd 
frames of these sequences (denoted as ‘2X’). They equal to 
the two times fast forward of the originals. These 8 test 
sequences are coded by an MPEG-4 SP@L3 encoder. All 
the sequences are in the CIF (352X288) format. Only the 
first frame is coded as I frame, and all the remaining frames 
are coded as P frame. The search range is 16, and the block 
size is 16x16. 

Table I. Test Sequences and Their Settings 

Abbreviation Sequence 
Bitrate  
(K bps) 

Frame rate 
(fps) 

Number 
of frames

md96 mother and daughter 96 10 300
fm512 foreman 512 30 300
fb1024 football 1024 30 90
st1024 steven 1024 30 300

Table II. ASP (Average Number of Search Points) 
Type ASP AGPS ERPS EHS DS FS 

md96 5.98 6.83 10.32 14.85 1024 
fm512 7.13 8.65 10.76 16.17 1024 
fb1024 11.58 16.36 14.29 22.36 1024 1X 

st1024 7.65 9.95 11.48 16.96 1024 
md96 6.4 7.56 10.66 15.44 1024 
fm512 8.81 11.70 12.21 18.72 1024 
fb1024 14.76 22.32 17.29 27.39 1024 2X 

st1024 9.28 12.45 13.07 19.49 1024 
 Average 8.95 11.98 12.51 18.92 1024 

Table III. PSNR (Peak Signal Noise Ratio) 
Type PSNR AGPS ERPS EHS DS FS 

md96 40.06 40.09 39.87 39.99 39.80 
fm512 34.05 34.10 33.94 34.06 34.06 
fb1024 34.79 34.88 34.86 34.93 35.28 1X 

st1024 29.39 29.31 29.47 29.44 29.48 
md96 38.661 38.66 38.43 38.60 38.41 
fm512 32.333 32.45 32.21 32.38 32.42 
fb1024 33.216 33.24 33.25 33.28 33.44 2X 

st1024 27.988 27.93 27.96 27.97 28.10 
 Average 33.81 33.83 33.75 33.83 33.87 

Table IV. Performance Comparison 

Gain 

AGPS  
Over 

 ERPS 

AGPS  
Over 
 EHS 

AGPS  
over 
 DS 

AGPS 
 over 
 FS 

Type Sequence CG  QG CG  QG CG  QG CG QG
md96 14% -0.03 73% 0.19 148% 0.07 170.24 0.26 
fm512 21% -0.05 51% 0.12 127% -0.01 142.62 0.00 
fb1024 41% -0.09 23% -0.07 93% -0.14 87.43 -0.49 1X 

st1024 30% 0.08 50% -0.07 122% -0.05 132.86 -0.09 
md96 18% 0.00 67% 0.23 141% 0.06 159.00 0.25 
fm512 33% -0.12 39% 0.12 112% -0.05 115.23 -0.09 
fb1024 51% -0.02 17% -0.03 86% -0.06 68.38 -0.22 2X 

st1024 34% 0.06 41% 0.03 110% 0.02 109.34 -0.11 
 Average 30% -0.02 45% 0.06 117% -0.02 123.14 -0.06 

 
The average number of search points (ASP) and peak 

signal noise ratio (PSNR) for various sequences and search 
algorithms are listed in Table II and Table III, respectively. 
And a pair-wise performance comparison is given in Table 

IV. In Table IV, the computing gain (CG) is defined as the 
ratio of ASP minus one, and the quality gain (QG) is the 
PSNR difference. In summary, the ASP of AGPS on the 
average is 30% faster than that of ERPS, 45% faster than 
EHS, 117% faster than DS (diamond search) and 123 times 
faster than FS (full search). And the PSNR of AGPS is 
about the same as that of all the other search algorithms 
(+0.06dB~-0.06dB).  

Run time profiling shows that the overhead in 
calculating the MV variances once per frame consumes 
around 2%  computing time in the proposed algorithm. Such 
overhead is quite marginal. Moreover, Table V shows the 
frequency of using GRPS and GHPS in AGPS. For a typical 
sequence, the ME process is dominated by GRPS. But 
GEHS helps for high MV variance sequences. 

Table V. Frequency of GRPS and GEHS 
Type 1X 2X 
Ratio GRPS GEHS GRPS GEHS 

md96 100% 0% 100% 0%
fm512 100% 0% 93% 7%
fb1024 70% 30% 45% 55%
st1024 100% 0% 100% 0%

 
5. CONCLUSIONS 

This paper proposes a systematic approach to analyze the 
adaptive PBME problem. Based on our previously proposed 
PBME model, we design an adaptive genetic pattern search 
(AGPS) scheme which combines GRPS and GEHS. Using 
the standard deviation of MVs in the previous frame to 
decide which search algorithm to be used in the current 
frame, the proposed algorithm achieves more than 30% 
acceleration in terms of the average search points while it 
maintains a similar level of picture quality. 
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