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ABSTRACT

We present a novel search algorithm which is suitable for opti-

mizing functions with a high-dimensional discrete-valued pa-

rameter vector. The algorithm is designed to find a function

local optimum with the minimal number of evaluated points

without requiring function derivatives. The algorithm is ap-

plied to frame-level rate-distortion (R-D) optimization using

Lagrangian relaxation to the rate constraints and to block mo-

tion estimation in H.264-based video coding. The R-D op-

timization is further accelerated by finding a good starting

point by the golden section search. The results show excellent

near-optimal R-D performance while computation is reduced

by 99% compared to the quadratic coordinate-wise steepest

descent algorithm. In motion estimation, the new algorithm

requires 7-13% less checking points than the small diamond

search algorithm with only a small penalty in prediction qual-

ity.

Index Terms— Rate-distortion optimization, Motion es-

timation, Optimization methods

1. INTRODUCTION

The objective of rate-distortion (R-D) optimization in video

coding is to select the operational parameters of the encoder

to produce as good video quality as possible with the avail-

able bit budget [1]. There are many parameters that can be

optimized, such as macroblock coding modes and transform

coefficients. In this work we investigate mainly the selection

of frame-level quantization parameters (QPs) in a H.264 en-

coder, but consider also motion estimation (ME).

Let N be the number of frames in a video sequence. For

each frame n, a QP qn selects the tradeoff between the bit

rate Rn and the video distortion Dn. The total distortion of

the entire sequence is Dtot =
∑N−1

n=0 Dn and the total rate is

Rtot =
∑N−1

n=0 Rn. All modern video encoders are predic-

tive: a frame is predicted by using one or several previously

encoded frames. Thus, if a previous frame is similar to the

current frame and the previous frame is encoded with good

quality, the current frame can be encoded with very small

bit rate while still obtaining good quality (small distortion).

Therefore, we can not assume that Dn and Rn are functions

of qn alone but functions of possibly all of the QPs for the

whole sequence Q =
[

q0 · · · qN−1

]
.

The objective is to find QPs which minimize the

distortion subject to the maximum bit rate: Q
∗

=
arg minQ Dtot

(
Q
)

subject to Rtot

(
Q
) ≤ Rmax, where Q

∗
=[

q∗0 · · · q∗N−1

]
is the optimum vector of QPs. The

Lagrangian multiplier technique allows converting this con-

strained problem into unconstrained one by introducing the

Lagrangian multiplier λ [1]:

C
(
Q
)

= Dtot

(
Q
)

+ λRtot

(
Q
)

(1)

Q
∗

= arg min
Q

C
(
Q
)
. (2)

By choosing λ and minimizing Eq. (2), we obtain the optimal

QP vector for the resulting rate. When only the rate is given,

the value for λ can be found, for example, by bisection search,

or by predicting it approximately from a previously encoded

video sequence [1]. The remaining problem is to find the op-

timal QP vector Q
∗
, which is the main subject of this paper.

An obvious method to find the discrete function optimum

is exhaustive search: try all possible QP combinations and se-

lect the best. This is infeasible in practice, because the num-

ber of combinations is exponential in the number of frames,

and evaluating the function for each combination is computa-

tionally very burdensome. In [2], the problem is formulated

into a trellis search and the monotonicity assumption is used

to prune as many branches from the trellis as possible. The
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work assumes that a frame is predicted from at most two pre-

viously encoded frames (with B-frames), which is true for

MPEG-2; however, in H.264 a frame may depend on several

(up to 16) previously encoded frames. Also, a trellis search

is intricate and has potentially exponential complexity. Thus,

the quadratic coordinate-wise steepest descent (QCWSD) al-

gorithm was presented in [3]. It is very simple and produces

near-optimal result assuming the reachability property. Un-

fortunately the QCWSD algorithm is impractically slow for

longer video sequences. Its speed was later improved by re-

ducing the number of necessary derivative calculations [4].

Nevertheless, even the faster linear coordinate-wise steepest

descent search (LCWSD) is slow, and furthermore, it often

fails to find near-optimum QPs.

In this paper, we introduce a new search algorithm called

the rotation search (RS), which is designed to find the func-

tion local optimum with the minimal number of function eval-

uations. As we do not make any assumptions about the func-

tion to be optimized, the algorithm can also be applied for

other purposes. Although the RS is guaranteed to find only

a local optimum, in practice it gives results very near to the

globally optimal algorithms in finding the QPs.

Another problem in video coding is block ME. In this

case, we are optimizing function similar to (1), but the distor-

tion is computed using sum of absolute differences between

the current macroblock and a candidate block in the search

area, and the rate is obtained from a look-up table based on

the motion vector length [5]. In ME, the function to be op-

timized has only two dimensions: the motion vector vertical

and horizontal components. We apply the RS also to ME and

find it to be faster than the small diamond search (SDS).

2. THE ROTATION SEARCH

The RS algorithm works better when a good initial position

for the search can be predicted. Therefore, for the R-D op-

timization, we first initialize the QP vector using the one-

dimensional golden section search (GSS) [6]. The GSS can be

used to quickly find the minimum of the function by assuming

that the QPs in all frames would be equal. This assumption

converts the N -dimensional function parameter vector into

one-dimensional. When the RS is used for ME, we use the

median motion vector predictor [5], as defined in the stan-

dards, for the initial search location.

The RS algorithm (shown below) iteratively loops over all

N dimensions. For each dimension, the direction, into which

the function is minimized, is predicted from the previous loop

execution for the same dimension. A step into this direction

is then immediately taken by increasing or decreasing the QP

by one. If the function value decreases, the prediction was

correct, the step is taken, and the loop continues to the next

dimension. If the function value instead increases, a step into

the opposite direction is taken. If the function increases also

into this direction, we are at a local minimum in this partic-

ular dimension. Otherwise, the prediction is updated so that

at the next time the first step is taken into this same direc-

tion. As soon as a step is not taken into any direction in any

dimension, the algorithm has found a local minimum. Since

there always is a minimum, this guarantees that the algorithm

finishes in a finite number of steps. We call the algorithm “ro-

tation search”, because it rotates over the dimensions as long

as it finds the local optimum.

Ud is a vector of dimensionality N , with all other elements

zero except the dimension d ∈ {0, . . . , N − 1}, which is 1.

For example, U2 =
[

0 0 1 0
]

when N = 4.

Q := initial guess from the GSS

pn := 1 for n ∈ {0, . . . , N − 1} # prediction

c := 2N # downcounter

d := 0 # dimension

i := 1 # direction

loop
if C

(
Q + Ud × i× pd

)
< C

(
Q
)

then
# New minimum: take the step, update prediction

Q := Q + Ud × i× pd

pd := pd × i
# Reset downcounter, skip to next dimension

if i = −1 then
c := 2N

else
c := 2N + 1

end if
i := −1

end if
i := −i
if i = 1 then

d := (d + 1) mod N
end if
c := c− 1

while c > 0
return Q

3. EXPERIMENTAL RESULTS

Five different R-D optimization algorithms were imple-

mented in the C language: QCWSD, LCWSD, RS, bisec-

tion search, and exhaustive search1. The bisection search as-

sumes that the QP is equal in all frames and performs an one-

dimensional search. The exhaustive search tries all QP com-

binations with values between 27 and 45 (195 = 2476099
calls to encoder with five frames). The R-D function eval-

uation was implemented by making a call to H.264 encoder

x264 revision 537, which was modified to accept a list of QPs

for the frames. We used 5, 18, 28, and 100 frames from the

beginning of 5 different standard video sequences in the ex-

periments, and intra only, IPPP, IPBP, and IPBBP frame type

formats. Although not all combinations were tried, especially

1Available from http://tuukkat.thruhere.net/rel/icassp07/
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(a) Rate-distortion performance, Tennis, IPBBP, 100 frames
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(c) Rate-distortion performance, Foreman, IPBBP, 100 frames
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Fig. 1. Comparison of R-D optimization algorithms.

at 100 frames, the running time for the experiments on AMD

Athlon 2 GHz CPU was still several months.

Some typical results are shown in Fig. 1. As the QCWSD

and the LCWSD algorithms generate all achievable R-D

points in one run, the corresponding curves in the figures are

continuous (except for the 5 frame case, in which only a few

points were plotted from the results). For other algorithms,

the resulting R-D points are plotted in the figures and a line is

interpolated between the points.

Both the QCWSD and the RS reach very nearly the same

performance suggesting that both achieve near optimum. In

the 5 frame case, a comparison to the exhaustive search al-

gorithm confirms this. Since the LCWSD approximates the

slope ∂Dtot/∂Rtot and the bisection search uses the same

QP for all frames, they give significantly worse results than

the near-optimal algorithms. Nevertheless, the RS is stag-

geringly efficient compared to either the QCWSD or the

LCWSD, needing typically over 99% less computation than

the QCWSD at 100 frames and being faster than even the

LCWSD, as demonstrated in Fig. 1b. With shorter sequences

the difference is smaller, but already at only 5 frames the

RS requires 90% less time than the QCWSD. The bisection

search is the most efficient, requiring roughly only about ten

calls to the encoder, but it falls seriously behind from the RS

and the QCWSD in quality, especially when several frame

types (that is, both P and B frames) are used.

Although we did not analyze the RS algorithm complex-

ity rigorously, the number of required encoder calls appears
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Fig. 2. Complexity of the rotation search.

Sequence

name

Search

method

Quality

(PSNR)

Checking

points

Tennis HEXBS 23.71 16.9

SDS 23.30 7.8

RS 22.90 7.0

Foreman HEXBS 26.48 16.5

SDS 26.43 7.4

RS 26.36 6.4

Mobile HEXBS 22.30 15.2

SDS 22.29 5.6

RS 22.28 5.3

Flower HEXBS 23.64 16.6

SDS 23.78 6.7

RS 23.46 6.2

Table 1. Comparison of motion estimation algorithms.

to be quite linear in the number of frames, as shown in Fig.

2, which plots the number of encoder calls at the four differ-

ent number of frames for two specific cases and as an average

over eight different test cases. The initialization stage with

the GSS amounts very little to the total time: it requires at

most 12 calls to the encoder, independent from the number of

frames. The RS itself requires at least 2N + 1 calls to the en-

coder to make sure that it has achieved a local minimum. The

total number depends on the shape of the multidimensional

Lagrangian function, and is difficult to predict theoretically.

ME was implemented using the RS along with the

hexagon-based search (HEXBS) [7] and the small diamond

search (SDS) [5] algorithms. The motion estimation and com-

pensation was then run for four standard sequences, each con-

taining 100 frames. The results are shown in Table 1. The

number of checking points is reduced by 7–13% compared to

the SDS with 0.01–0.40 dB degradation in motion compen-

sated image PSNR.

4. CONCLUSIONS

We presented a new fast algorithm for finding local optimum

from functions with a high-dimensional and discrete-valued

parameter vector. We applied the algorithm for video frame-

level R-D optimization by converting rate constrained distor-

tion minimization into an unconstrained Lagrangian function,

finding a good approximate initial location with the GSS, and

then finding a local optimum using the new search algorithm.

The results show that the algorithm finds very nearly the op-

timum QP vector but is much faster than some other nearly

optimal algorithms such as the QCWSD.

While the algorithm suits best for optimizing high-

dimensional functions, it is also useful in less dimensions. As

a proof, we implemented ME based on the RS algorithm and

obtained a good speed-quality tradeoff compared to the other

fast ME algorithms.

Although the method is too slow to be used for R-D op-

timization in many real-time encoders, as it requires multiple

coding of the video sequence for gathering the R-D data, R-D

models [2] could be used to avoid the encoding step and to

speed up the search significantly. In the current form, the al-

gorithm is still useful for offline encoding and benchmarking.
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