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ABSTRACT

The on-going scalable video coding (SVC) standard is an ex-
tension of H.264/AVC. It enables signi cantly improved com-
pression performance at the expense of greatly increased com-
putational complexity at both the encoder and the decoder
sides. This paper presents an adaptive algorithm to reduce the
complexity of decoder at the encoder side for coarse granular
scalability. Hence, lightweight bitstreams are generated at the
encoder which requires signi cantly less decoding complex-
ity. The experimental results show that the proposed scheme
provides signi cant reduction in the complexity of decoder
with acceptable coding loss and minor impact on the encoder
complexity.

Index Terms— Scalable video coding, decoder complex-
ity reduction, coarse grain SNR scalability

1. INTRODUCTION

Scalable video coding as proposed in [1] is an extension of
H.264/AVC. Among the scalabilites available in SVC, coarse
granular scalability (CGS) is one of the most important. The
CGS scalability can be realized by a layered approach in-
volving a base layer and several enhancement layers. The
base layer contains a reduced quality version of each coded
frame. The enhancement layers are coded based on predic-
tions formed from the base layer pictures and previously en-
coded enhancement layer pictures. Current CGS scheme shows
signi cant achievements in terms of coding ef ciency by us-
ing fractional (1/4) pixel precision, adaptive block size motion
compensation, loop lter, 4x4 integer transform, etc. How-
ever, the excellent performance of CGS is achieved at the ex-
pense of computational complexity at both the encoder and
the decoder sides. The computational capacity of devices, es-
pecially handhold devices, is usually very limited. It is desir-
able to obtain a good tradeoff between complexity and com-
pression for the CGS.
In order to address this problem, a number of efforts have

been made to alleviate the SVC encoder complexity due to
mode decision [3], while maintaining visual quality and other
coding ef ciency. However, there is no result on the com-
plexity reduction of a CGS decoder although this problem

is more important than the complexity reduction of an SVC
encoder in many applications such as DVD players, digital
TV receivers etc [4]. It should be pointed out that a number
of efforts have been made to explore decoder complexity re-
duction in H.264/AVC by using the observation that image
interpolation and deblocking lter consume the majority of
the decoding time. Ugur et al. proposed a decoder com-
plexity reduction by biasing easy-to-decode motion vectors
in a rate distortion optimized fashion [4]. An effort has also
been made by Wang et al. to effectively reduce the decoder-
side computational cost required at the H.264 decoder [5].
All these methods are ef cient in reducing the computational
complexity with acceptable quality degradation in H.264 de-
coder. However, these methods are not applicable to all the
layers in a CGS system. Moreover, they did not provide any
formulation to choose the Lagrangian factor associated with
the complexity issue.
In this paper, we propose an adaptive encoding algorithm

that would generate lightweight bitstreams which require less
amount of sub-pixel interpolations at the decoder. Moreover,
our proposed algorithm is adaptive to all the layers in SVC.
This is achieved by using new rate-distortion-complexity op-
timized cost functions for motion estimation and mode de-
cision as compared to traditional encoding algorithms. The
experimental results show that the proposed method can re-
duce the decoding complexity effectively and exibly with
acceptable performance degradation. The rest of this paper is
organized as follows. In Section 2, a new framework of rate-
distortion-complexity optimization is formulated. In Section
3, a complexity model for the interpolation is provided. Sim-
ulation results are presented in Section 4. Finally, Section 5
concludes the paper.

2. RATE-DISTORTION-COMPLEXITY
OPTIMIZATION

2.1. Problem Formulation

In SVC, variable block-size based motion estimation/motion
compensation is used to reduce the temporal redundancy among
frames in the same layer and the spatial redundancy among
frames in different layers. SVC de nes 7 macroblock (MB)
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modes for inter prediction (16 × 16, 16 × 8, 8 × 16, 8 × 8,
8× 4, 4× 8 and 4× 4), 2 macroblock modes for intra predic-
tion (4 × 4 and 16 × 16) and SKIP/Direct. For encoding
the motion eld of an enhancement layer, “Base layer mode”
and “Qpel re nement mode”, are added to the modes appli-
cable in the base layer. These two modes indicate that motion
and prediction information including the partitioning of the
corresponding MB of the base layer is used. In order to select
the best mode for each MB, the encoder exhausts all possible
modes in the rate-distortion optimization (RDO) framework
[1]. As discussed in previous section, it is desirable to design
a new framework to obtain a good trade off between complex-
ity and compression. Here, such a frame work called rate-
distortion-complexity optimization (RDCO) is formulated as

min D,

subject to R < Rc, C < Cc, (1)

where D, R and C stand for the distortion, rate and com-
plexity. And Rc and Cc stand for the rate and complexity
constraint.
This problem appears in both motion estimation and mode

decision stages, and can be solved by the conventional La-
grangian optimization method as below.
1) In motion estimation stage, searching for the best mo-

tion vector can be viewed as the minimization of the Lagrangian
cost function:

J(MV |QP, λSAD, λMOTION )
= SAD(MV |QP ) + λSADR(MV |QP )
+λMOTIONCMOTION (2)

where CMOTION is the interpolation complexity assigned to
each motion vector (MV), λSAD and λMOTION are two La-
grangian multipliers, SAD is the sum of absolute difference
of Hadamard-transform coef cients,R represents the number
of bits that would be used to code the MV, QP represents the
quantization parameter settings.
2) RDCO mode decision refers to the minimization of the

following Lagrangian function:

J(MODE|QP, λSSD, λMODE)
= SSD(MODE|QP ) + λSSDR(MODE|QP )
+λMODECMODE (3)

where λMODE and λSSD are two Lagrangian factors, SSD
is the sum of the squared differences between the original MB
and the reconstructed MB located in the reference frames,
R denotes the bit cost for encoding the motion vectors, MB
header and all the residual information, and CMODE is the
sum of all the interpolation complexities for all motion vec-
tors involved in the candidate mode, i.e.

CMODE =
N∑

n=1

CMOTION (n) (4)

with N representing total number of motion vectors of the
concerned MB.

2.2. Choices of λMODE and λMOTION Based on λSAD

To apply (2) and (3) to an SVC encoder, it is required to prop-
erly determine the values of λMODE and λMOTION . The
Lagrangian multipliers λMODE and λMOTION are usually
de ned as constant values [4]. However, the optimal choice
of λMODE and λMOTION should depend on the QP. There-
fore, the algorithm for the complexity-constrained motion es-
timation can be modi ed in order to incorporate macroblock
quantization step-size changes.
In order to examine the relationship between the QP and

λMOTION , a series of experiments on various sequences were
set up. We rst x the value of λMODE . As a result, a par-
ticular setting of λMOTION and QP yields a minimum La-
grangian cost function in Eq.2. In our experiments, the QP
is varied over several values, 10, 15, 20, 25, 30, 35, 40. For
each QP, BDPSNR [6] is calculated for each possible value
of λMOTION ranging from 10 to 200. Finally, the value of
λMOTION is selected which results in nearly 0.05dB BDP-
SNR drop. Hence, we have the best quality and interpolation
complexity trade off.
Note that the Lagrangian multiplier λSAD is closely re-

lated to QP in the following equation [1]:

λSAD = 0.92 ∗ 2QP/6−2 (5)

For each QP value, λSAD can be computed from the above
equation. Since λSAD is known in the process of comput-
ing Eq.2, in the following stage, we only need to examine
the relationship between λSAD and λMOTION . Typical ex-
perimental results are plotted in Fig.1, where the solid curve
shows the relationship between λSAD and λMOTION from
the experimental results.
Based on the curve, we use data tting technique to gener-

ate the following function, which relates λMOTION to λSAD

as following:

λMOTION = KMOTION ∗ ln(λSAD + 1) (6)

The function is also plotted as dash curve in Fig.1. From this
gure, we can see that our proposed function is suf cient to
accurately t the original experimental data. By adjusting the
value of K, we can achieve the interpolation complexity and
quality trade off at motion estimation stage. Similarly, for
mode decision, we have:

λMODE = KMODE ∗ ln(λSSD + 1) (7)

For each video sequence, an optimal set of KMOTION

and KMODE can be generated to optimize the trade-off be-
tween the interpolation complexity and video quality. How-
ever, based on extensive experiments on various test sequences,
the value ofKMOTION andKMODE are not sensitive to dif-
ferent video sequences. Therefore, in our experiments, they
are set to be 45 and 1 for all the test sequences.
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Fig. 1. λSAD versus λMOTION for FOREMAN sequence

3. INTERPOLATION COMPLEXITY MODELLING

Sub-pixel motion estimation and compensation involves search-
ing sub-sample interpolated positions as well as integer-sample
positions, choosing the position that gives the best match and
using the integer- or sub-sample values at this position for
motion compensated prediction. Fig.2 shows the concept of
a quarter-pixel motion estimation. There are 15 possible sub-
sample positions, including three half-pixel positions (at loca-
tion 3, 9, and 11) and twelve quarter-pixel positions. Each of
the sub-pixel position requires a different interpolation lter.
It is obvious that the location of a motion vector in u-

ences the decoder interpolation complexity directly. We can
assign the interpolation complexity term to each MV location
as follows:
1) If the motion vector has integer values for both its hor-

izontal and vertical directions, the decoder does not perform
any interpolation at all, hence the interpolation cost is 0.
2) Otherwise, if the motion vector has integer value for ei-

ther horizontal or vertical direction, the decoder needs to per-
form at least one 6-tap interpolation. The interpolation cost is
set to 1 in the proposed scheme.
3) Otherwise, if the motion vector is at location 6, 8, 14

and 16, the decoder needs to perform two 6-tap interpolation
and one 2-tap interpolation. Hence, the interpolation cost is
set to 2 in the proposed scheme.
4) Otherwise, if the motion vector is at location 7, 10, 11,

12 and 15, the decoder needs to perform at least seven 6-tap
interpolation. Hence, the interpolation cost is set to 4 in the
proposed scheme.

Fig. 2. Sub-pixel locations in SVC

4. SIMULATION RESULTS

The proposed decoder complexity reduction algorithm is em-
bedded in JSVM 2.0 encoder [1]. The test platform used
is Intel Pentium IV, 1.83GHz CPU, 256M RAM with Win-
dows XP professional operating system. The test condition
is shown in Table I. In our experiments, ve standard test se-
quences including FOREMAN, FOOTBALL, BUS, CREW
and CITY have been tested. We only consider the two-layer
case and the QP value settings for all the layers are shown in
Table I. The GOP size is set to be 8.

Table 1. Testing condition
Tested Video Sequences

Frame Rate 15 Hz
Resolution QCIF

QP Setting
Base 40
Enhance 30 to 10

MV search range is ±32 pels.
Coding Option Used Reference frame number is 1.

Full search is used in ME.
Codec JSVM 2.0 encoder

The testing parameters in our experiments include the com-
plexity saving, Y-PSNR and bit rate for both base layer and
enhancement layer. We use Complexity Saving (CS) to indi-
cate the total interpolation computational cost saving in de-
coding process:

CS =
CJSV M − Cproposed

CJSV M
× 100% (8)

where CJSV M and Cproposed are the total interpolation com-
putational cost of JSVM 2.0 system and its modi ed system
according to the proposed algorithm, respectively.
Let QPe stand for QP values at the enhancement layer.

Table 2 to 4 show the tabulated performance comparison of
the proposed algorithm with JSVM 2.0 for different QPe.
Note that in the table positive values mean increments, and
negative values mean decrements. The results show that the
proposed method is very effective in reducing the decoding
complexity, especially for the sequence with high motion and
ne detail. The average decoding complexity is reduced up
to 61%. Fig. 3 and 4 present the rate distortion curves for
FOREMAN and FOOTBALL. From these gures, we can
conclude that our scheme can achieve consistent decoding
complexity saving over a large bit rate range with negligible
loss in PSNR and increments in bit rate.

5. CONCLUSION

In this paper, an adaptive algorithm has been proposed to re-
duce the complexity of decoder for SNR scalable video cod-
ing is presented. By introducing the complexity term in RDO,
the motion interpolation that results in high complexity will
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Fig. 3. Rate distortion curve for FOREMAN
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Fig. 4. Rate distortion curve for FOOTBALL

be partially eliminated, hence the complexity of the decoder
will be reduced. The results of the simulations in Section
4 demonstrate that the proposed algorithm can save up to
76% of the decoding complexity as compared to the origi-
nal JSVM 2.0 system. Moreover, it introduces insigni cant
picture degradation and bit rate increase. Although both in-
terpolation and deblocking lter consume the majority of the
decoding time, this paper focuses on reducing the complexity
of interpolation and the complexity reduction of deblocking
lter will be studied in our future research.

Table 2. Simulation results with QPe = 10
Base Enhancement

Sequence ΔPSNR ΔBR ΔPSNR ΔBR CS
[dB] [%] [dB] [%] [%]

Foreman -0.045 0.223 0.005 1.366 61.90
Football 0.006 0.514 0.060 0.796 60.80
Bus -0.016 0.986 0.044 0.844 43.91
Crew -0.033 0.755 0.067 1.379 67.86
City -0.048 1.399 0.001 0.622 45.36

Average -0.027 0.775 0.035 1.001 55.97

Table 3. Simulation results with QPe = 20
Base Enhancement

Sequence ΔPSNR ΔBR ΔPSNR ΔBR CS
[dB] [%] [dB] [%] [%]

Foreman -0.045 0.223 -0.076 1.759 64.53
Football 0.006 0.514 -0.089 1.084 69.01
Bus -0.016 0.986 -0.010 1.265 46.96
Crew -0.033 0.755 -0.060 2.489 75.37
City -0.048 1.399 -0.025 1.978 46.49

Average -0.027 0.775 -0.052 1.715 60.47

Table 4. Simulation results with QPe = 30
Base Enhancement

Sequence ΔPSNR ΔBR ΔPSNR ΔBR CS
[dB] [%] [dB] [%] [%]

Foreman -0.045 0.223 -0.097 0.574 65.10
Football 0.006 0.051 -0.091 0.071 72.29
Bus -0.016 0.099 -0.035 1.008 48.09
Crew -0.033 0.755 -0.125 0.396 75.95
City -0.048 1.399 -0.078 1.174 44.41

Average -0.027 0.775 -0.085 0.645 61.17
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