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ABSTRACT

In this paper we propose a lifting-based 8x8 IDCT structure and its
IEEE-1180 compliant approximation solution. Derived from an ef-
ficient Loeffler’s 11-multiply IDCT structure, the proposed scheme
comprises of butterflies and dyadic-rational lifting steps that can be
implemented using only shift and add operations. Our approach also
allows the computational scalability with different accuracy-versus-
complexity trade-offs. Furthermore, the lifting construction allows
a simple construction of the corresponding multiplierless forward
DCT, providing bit-exact reconstruction if pairing with our proposed
IDCT. Our high-accuracy solution provides a very close approxima-
tion of the floating-point IDCT. The experiments in MPEG-2 and
MPEG-4 video coders under the worst-case assumptions show al-
most drifting-free reconstructions.

Index Terms— IEEE-1180, lifting, multiplierless, IDCT

1. INTRODUCTION

The discrete cosine transform (DCT) has found wide applications in
image/video coding and processing, and has been the main transform
employed in current compression standards such as JPEG, H26x,
and MPEG family [1]. In order to reduce the computation complex-
ity of DCT/IDCT, numerous fast algorithms have been proposed for
image and video applications. Many of these algorithms are based
on various sparse factorizations of the DCT matrix, e.g., Chen’s [2]
and Loeffler’s algorithm [3], which still require multiplications with
irrational parameters. In practice, various fixed-point approxima-
tions are very common, leading to algorithms sacrificing accuracy
for lower computational complexity. In most of MPEG standards,
different video decoders employ different IDCT fixed-point approx-
imations, resulting in the mismatched reconstruction of the decoded
frame relative to the encoder’s model of the intended decoded pic-
ture. Subsequent inter-picture prediction from the aforementioned
mismatched P frame makes error accumulation and generates the
so-called drifting effects which can degrade the decoded video qual-
ity quickly, especially when the encoder has a minimal amount of
intra-block refresh. As signal processing technology has advanced,
the need for the degree of freedom in IDCT transform implementa-
tions in decoder has subsequently diminished. As a result, MPEG
considers to develop a new voluntary standard specifying a partic-
ular fixed-point approximation to the ideal IDCT function, and re-
cently has a call for proposals on fixed-point 8x8 IDCT and DCT
Standards [4]. The call requires an approximation that is within a
specified degree of precision relative to the ideal function definition
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of the IDCT. And the accuracy requirements are compliant to IEEE-
1180 standard [5], which has specified a set of evaluation criteria for
IDCT implementations.

One approach in designing integer transforms and realizing DCT
/IDCT approximations is via lifting-based structures [6, 7]. Differ-
ent with other fixed-point DCT/IDCT implementations, the lifting
structure enables invertible, integer-to-integer mapping as well as
in-place computation. The irrational lifting parameters can be ap-
proximated by dyadic rationals, leading to fast algorithms that can
be implemented using only binary additions and shifting operations.
In [6], the binDCT family derived from Chen’s and Loeffler’s DCT
structure, is shown to have a 16-bit multiplierless implementation
while enabling lossless compression via invertible integer-to-integer
mapping and capable of achieving virtually similar lossy compres-
sion efficiency as the original DCT. However, none of the binDCT
configurations can pass IEEE-1180 measurements because the main
design focus of the binDCT is on low complexity for portable com-
puting. Zelinski et al uses the adder numbers of the dyadic rationales
to represent the arithmetic complexity, and proposes an automatic
approach for minimizing such complexity under the constraint of a
particular quality measure such as coding gain of the forward DCT
[7]. Their major concern is in the forward DCT domain, and the
approximation accuracy of IDCT has not been addressed.

In this paper we propose a lifting-based 8x8 IDCT approxima-
tion scheme, which is an extension of our binDCT family [6]. Our
goal is to not only meet all of the compliance requirements in IEEE-
1180, but also find out the accuracy we can achieve within the 32-bit
precision constraint. The paper is organized as follows. Section II
presents our lifting solution, and gives the dynamic range analysis
which which turns out to be a critical implementation issue in fixed-
point architectures. Results of IEEE-1180 compliant tests and drift-
ing tests in MPEG-2 and MPEG-4 codec are presented in Section
III. Finally, conclusions are given in Section IV.

2. LIFTING-BASED IDCT STRUCTURE

2.1. Plane-Rotation-Based IDCT Factorization

An elegant factorization for eight-point IDCT was proposed by Lo-
effler et al [3]. The resulting structure is depicted on the left of Fig.
1. This structure contains a 4-point IDCT and it requires 11 mul-
tiplications (achieving the multiplication lower bound as proven in
[8]) and 29 additions. This factorization is non-scaled and requires a
uniform scaling factor of 1/

√
8 at the end of flow graph to complete

true 1-D IDCT transform. Hence, it does not require any modifi-
cation of the quantization/inverse quantization stages if it is used in
image/video applications. In the 2D separable implementation, the
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Fig. 1. Signal flow graph of eight-point IDCT. Left: Loeffler’s factorization. Right: Proposed lifting-based IDCT approximation structure.

scaling factor becomes 1/8 which is a simple 3-bit right-shift oper-
ation. Another advantage of the structure is that the two major plane
rotations π

16
and 3π

16
are close to the final output butterfly, which

can delay approximation errors at the beginning of the flow graph,
leading to high-accuracy IDCT approximation. As it is difficult to
directly approximate

√
2 with high accuracy in Loeffler’s structure,

we factorize
√

2 factors according to (1) and (2). Therefore, the
derived plane rotation-based IDCT factorization structure contains
series of butterflies and four plane rotations, i.e., π

8
, π

4
, π

16
and 3π

16
.
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2.2. Proposed Lifting-Based IDCT Structure

Any plane rotation can be decomposed into a cascade of three lifting
steps as

[
cos(α) −sin(α)
sin(α) cos(α)

]
=

[
1 −p
0 1

] [
1 0
u 1

] [
1 −p
0 1

]
(3)

=
[

1 0
p 1

] [
1 −u
0 1

] [
1 0
p 1

]
,

where p = 1−cos(α)
sin(α)

and u = sin(α). To invert a lifting step,

we simply need to subtract out what was added in at the forward
step. Hence, the original signal can still be perfectly reconstructed
even if the floating-point multiplication results in the lifting steps are
rounded to integers, as long as the same procedure is applied to both
the forward and inverse routines. Therefore, perfect reconstruction
is guaranteed by the lifting structure itself.

Each of the four rotation angles {π/8, π/4, π/16, 3π/16} pre-
viously mentioned is then converted to three lifting steps as in (3).
The resulting lifting-based IDCT structure is illustrated on the right
side of Fig. 1. To obtain fast implementation, we approximate the
floating-point lifting coefficients by hardware-friendly dyadic val-
ues of the form k/2n, which can be implemented by only shift and
addition operations. Different accuracy versus complexity trade-offs
can be achieved by adding or removing dyadic fractions in the ap-
proximation of the theoretical parameters, leading to scalable com-
putational capability. As the high accuracy approximation to 64-bit
float-point IDCT is our major concern, we select the dyadic lifting
parameters listed in Table 1 such that our proposed lifting structure

has the highest accuracy with the lowest complexity within 32-bit
word length [9]. The accuracy performance is measured by IEEE-
1180 criteria, which will be explained in details in Section III. The
level of complexity is roughly measured as the total number of ad-
ditions and bit-shift operations required. Specifically, the 1-D IDCT
implementation requires 85 additions and 61 shifts, and 2-D IDCT
totally needs total 1362 additions and 1106 shifts. The correspond-
ing forward DCT approximation can be obtained by simply reversing
the signal flow and inverting the polarity of lifting parameters.

2.3. Dynamic Analysis

In order to improve approximation accuracy, the input DCT vector
coefficients X need to be up-scaled by certain K bits before they
feed into IDCT. The value of K depends on the dynamic range of
our IDCT scheme. A similar method in [6] is used to analyze the
dynamic range. However, we could not directly assume X can be
randomly generated. Instead, we calculate the maximum or mini-
mum output of each subband by generating the worse-case inputs
X = DCTII

8 x, where the integer vector x can be randomly as-
signed and DCTII

8 is the ideal type-II DCT matrix. As all lift-
ing parameters are less than unity and implemented with addition
and right-shift operations, they minimize the intermediate dynamic
range. It can be verified that the absolute value of the worst interme-
diate result in each lifting steps is less than that of its final output.

For an 8-bit video signal, the input sample values to the DCT
x after motion estimation and compensation are in the range of [-
256, 255]. Hence, the 2D-DCT coefficients X can be shown to be
within the 12-bit range [−2048, 2047]. The outputs of our 1D-IDCT
approximation scheme in Fig. 1 would be still within [−2048, 2047]

without the
√

8 down-scaling. The maximum intermediate data have
13-bit range due to the internal butterflies. In the second pass of
IDCT, the final IDCT outputs after 3-bit down shifts would be within
9-bit range [−256, 255]. Therefore, the dynamic range upper bound
of our proposed structure is 13-bit for the 12-bit DCT inputs. That
means, for the popular case that the input DCT coefficients are in
the range of [-2048, 2047], K = 3 is the limit for 16-bit IDCT
implementations while K = 11 is the upper limit for 24-bit and
K = 19 is the upper limit for 32-bit architectures.

3. EXPERIMENTAL RESULTS

In this section, we first present IEEE-1180 test results to demonstrate
how close the proposed lifting-based IDCT is to the floating-point
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Table 1. Lifting parameters for high accuracy IDCT approximation.
Parameters Theoretical value Dyadic values Multiplierless representation

pπ/8
1−cos(π/8)

sin(π/8)
3259
16384 y = w + (w >> 4)− (1 >> 12)− (1 >> 14), where w = (1 >> 3) + (1 >> 4);

uπ/8 sin(π/8) 50159
131072 y = (1 >> 2) + w − (w >> 10), where w = (1 >> 3) + (1 >> 7);

pπ/4
1−cos(π/4)

sin(π/4)
217167
524288 y = (1 >> 2) + w + (1 >> 7) + (w >> 10)− (1 >> 19),where w = (1 >> 3) + (1 >> 5);

uπ/4 sin(π/4) 46341
65536 y = w + (w >> 3) + (1 >> 8) + (w >> 13), where w = (1 >> 1) + (1 >> 3);

pπ/16
1−cos(π/16)

sin(π/16)
25819
262144 y = (1 >> 4) + w + (1 >> 10)− (w >> 8)− (1 >> 18),where w = (1 >> 5) + (1 >> 8);

uπ/16 sin(π/16) 25571
131072 y = w + (1 >> 7)− (1 >> 12) + (w >> 13), where w = (1 >> 3) + (1 >> 4);

p3π/16
1−cos(3π/16)

sin(3π/16)
2485
8192 y = w − (w >> 5) + (w >> 9), where w = (1 >> 2) + (1 >> 4);

u3π/16 sin(3π/16) 145639
262144 y = (1 >> 1) + w + (w >> 6) + (w >> 11), where w = (1 >> 4)− (1 >> 7);

Table 2. IEEE-1180 test results of the proposed IDCT approximation.
1000000 iterations

Input Scaling ppe pmse omse pme ome pep Pass test?
Range value <= 1 <= 0.06 <= 0.02 <= 0.015 <= 0.0015

K = 3 1 4.44e-001 9.36e-002 4.44e-001 7.12e-003 9.36% No
K = 6 1 3.93e-002 9.30e-003 3.93e-002 6.14e-004 0.93% Yes

[−256, 255] K = 10 1 2.81e-003 5.95e-004 2.81e-003 3.65e-005 0.06% Yes
K = 18 1 3.04e-004 1.78e-004 3.10e-005 -2.94e-006 0.02% Yes

K = 3 1 2.96e-001 6.09e-002 2.96e-001 4.67e-003 6.09% No
K = 6 1 2.64e-002 6.18e-003 2.64e-002 4.04e-004 0.62% Yes

[−384, 383] K = 10 1 1.73e-003 4.16e-004 1.73e-003 2.73e-005 0.04% Yes
K = 18 1 2.76e-004 1.72e-004 5.50e-005 -1.09e-006 0.02% Yes

K = 3 1 2.23e-001 4.54e-002 2.23e-001 3.53e-003 4.54% No
K = 6 1 1.99e-002 4.64e-003 1.99e-002 3.19e-004 0.46% Yes

[−512, 511] K = 10 1 1.43e-003 3.40e-004 1.43e-003 1.80e-005 0.03% Yes
K = 18 1 3.22e-004 1.78e-004 2.90e-005 2.72e-006 0.02% Yes

IDCT. Then, we discuss the results of near-dc test and perfect recon-
struction (PR) test. Finally, we show drifting test results in MPEG-2
and MPEG-4 coders under the worst-case drifting assumption.

3.1. IEEE-1180 Test

IEEE-1180 provides a set of specific criteria to measure the com-
pliance of 8x8 IDCT to the ideal IDCT[5]. In the IEEE-1180 test,
an 8x8 block of integers is randomly generated and fed into double-
precision floating-point forward DCT. The output DCT coefficients
are then passed through 64-bit floating-point IDCT and the proposed
fixed-point IDCT, respectively. The accuracy is measured based on
the reconstructed integers from these two IDCTs. Specifically, the
peak pixel-wise error (ppe), peak mean-squared error (pmse), overall
mean-square error (omse), peak mean error (pme), and overall mean
error (ome) need to compute for the pseudo-random input blocks
generated at 10000 and 1000000 iterations. The randomly generated
block integers should cover the following five ranges, i.e., [−5, 5],
[−256, 255], [−300, 300], [−384, 383] and [−512, 511] with pos-
itive and negative sign. One fixed-point IDCT could be consid-
ered to be compliant with IEEE-1180 standard if only it satisfies
the conditions of ppe <= 1, pmse <= 0.06, omse <= 0.02,
pme <= 0.015 and oms <= 0.0015 for all the input ranges.

Table 2 lists the IEEE-1180 results of the proposed lifting-based
IDCT for three K values, which represents 32-bit, 24-bit and 16-
bit implementation, respectively. Due to the limited space, Table 2
only includes the results for the three input ranges, i.e., [−256, 255],
[−384, 383] and [−512, 511] with the positive sign at 1000000 itera-
tions. In order to show pixel-wise errors more clearly, the percentage
of pixel-wise errors (pep) is also included in the table. From these
results, we can see that within the 32-bit word length constraint,
the proposed lifting-based fixed-point IDCT solution delivers super
high-accuracy approximation (omse = 1.78e − 04 for K = 18);
and 24-bit implementation also leads a very high accuracy approx-

imation (omse = 5.95e − 004 for K = 10). The percentage of
pixel-wise error clearly shows the proposed algorithm is very accu-
rate (less than 0.06% mismatch errors) for 24-bit and 32-bit imple-
mentations. Moreover, K = 6 is the minimal up-scaling bits for our
implementations in order to pass IEEE-1180 tests fully. Although
the 16-bit implementation of K = 3 cannot pass IEEE-1180 tests,
it discloses an interesting observation that only high accurate lifting
parameters would not certainly lead to high accuracy approxima-
tion. The relative error analysis are addressed in our other papers
[10]. In [9], we also have another 16-bit implementation solution of
our scheme with different dyadic values, which can pass IEEE-1180
test for the input range [−256, 255].

3.2. Near-DC Test and PR Test

Near-DC test is to measure DC leakage problem in one transform,
i.e., the bandpass and highpass subbands should have no DC leak-
age. This means that these high-frequency subbands should have
at least one vanishing moment. The zero DC leakage can prevents
the annoying checkerboard artifacts that can occur if high-frequency
bands are severely quantized. It is an important measurement for
fixed-point IDCT transform [4]. In near-dc test, the input 8x8 DCT
coefficients are set to be zeros except DC coefficient dc and the high-
est frequency DCT coefficient h. dc is set to be one of integers
in the range of [−2048, 2047]. If dc is even, h = 1 ; otherwise,
h = 0. Then, pixel-wise errors are computed between the recon-
structed values from the proposed IDCT and those from double-
precision floating-point IDCT. As long as the scaling bit K is greater
than 4, our proposed lifting-based IDCT can pass near-dc test, i.e.,
pixel-wise errors are not larger than 1 [9].

Due to the closely-matched nature of the forward-inverse lifting,
the mismatch between our lifting-based IDCT and DCT is mitigated.
In fact, perfect reconstruction (no mismatch at all) for the integer
space in the range [−256, 255] is achievable when the DCT coef-
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Drifting error in MPEG-2 Decoder at Q=1
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Drifting error in MPEG-4 Decoder with MPEG-2 quantization
at Q=1, 1/4-pixel MC disable
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Fig. 2. IDCT drifting tests for ’Foreman’ CIF sequence of 300 frames. Left figure: drifting errors in MPEG-2 decoder at Qp = 1; Right
figure: drifting errors in MPEG-4 decoder with MPEG-2 quantization module used at Qp = 1 and 1/4-pixel motion compensation disable.

ficient range is extended to [−8192, 8191] (14-bit representation is
needed instead of 12-bit). This bit expansion comes from the fact
that there are still butterflies left in our structure shown in Fig. 1.
And each of the butterflies carries an expansion factor of

√
2.

3.3. Drifting Tests

Drifting is the effectively-random deviation of decoders from the
values that are modelled in the encoder. Drifting tests are carried
on the coders of MPEG-2 and MPEG-4. In the encoders, double-
precision floating-point DCT and IDCT are used, and all pictures are
coded as P-frames except the first one is coded as I-frame. To evalu-
ate the drifting effects better, we consider the extreme worse-case by
disabling the intra macroblock refresh in encoder and setting quanti-
zation step size Qp to be 1. At the decoder side, the proposed lifting-
based IDCT and double-precision floating-point IDCT are used to
reconstruct the sequences, respectively. PSNR values are then com-
puted and their absolute difference values are used to evaluate the
drifting effects. Fig. 2 illustrates the experiment results of Foreman
CIF sequence (total 300 frames) in MPEG-2 and MPGE-4 coders
for our 32-bit fixed-point IDCT implementation at K = 18. In
MPEG-2 decoder, the average drifting is 0.0043dB among the first
131 frames, and 0.01258dB among the total 300 frames. In MPEG-
4 with MPEG-2 quantization module and quarter-pixel motion com-
pensation disable, the average drifting is 0.001369dB among the first
131 frame, and 0.001714dB among the 300 frames. These results
clearly confirm that the proposed IDCT transform has very high ac-
curate approximation and leads to very little drifting effects.

4. CONCLUSION

In this paper, a non-scaled lifting-based multiplierless IDCT approx-
imation structure is proposed, which allows bit-exact reconstruc-
tion given that the range restriction on the DCT coefficients is ex-
tended by 2 more bits. The proposed structure comprises of regu-
lar stages, convenient for pipelining, and allows the computational
scalability with different accuracy-versus-complexity trade-offs. A
very high-accuracy fixed-point solution is also presented, which pro-
vides a very close approximation of the floating-point IDCT. The al-
gorithm delivers very low overall mean-square errors in the e-004
range. Such super high-accuracy level leads to almost drifting-free
reconstruction when pairing with a 64-bit floating-point IDCT in the
encoder. To our best knowledge, it is the highest accuracy that we
can achieve in our IDCT fixed-point approximation structure within

the 32-bit constraint. Due to the limited space, rate-distortion anal-
ysis of our proposed scheme will be further addressed in our other
papers.
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