
LOW COMPLEXITY FIXED-POINT APPROXIMATION OF INVERSE DISCRETE COSINE
TRANSFORM

Yuriy A. Reznik*, Sr. Member IEEE, Arianne T. Hinds§, Sr. Member IEEE, Nenad Rijavec§

*QUALCOMM, Incorporated, San Diego, CA, Email: yreznik@qualcomm.com

§IBM, Incorporated, Boulder, CO, Email: arianne,nenad@us.ibm.com

ABSTRACT

This paper presents an efficient algorithm for computing the
Inverse Discrete Cosine Transform (IDCT) for image and
video coding applications. This algorithm was submitted in
response to MPEG’s call for proposals for ISO/IEC 23002-2
(Fixed-Point 8x8 IDCT and DCT) standard, and was
subsequently adopted in the Working Draft 1 of this
standard. Our proposed algorithm is a multiplication-free
implementation. It is based on a modification of Arai, Agui,
and Nakajima’s (AAN) factorization, and requires only 42
addition and 16 shift operations per scaled 1D transform.
Each register in our scaled 1D transform requires at most 22
bits. This implementation complies with the MPEG IDCT
precision specification ISO/IEC 23002-1.

Index Terms — DCT, IDCT, factorization, multiplier-less
algorithms

1. INTRODUCTION

The Moving Picture Experts Group (MPEG) is currently
developing a standard for a fixed-point approximation of
8x8 Inverse Discrete Cosine Transform (IDCT). The use of
this IDCT specification in implementing existing MPEG
video coding standards (MPEG-1, MPEG-2, and MPEG-4
part 2) should be voluntary and intends to offer the
following benefits [1]:
– Providing an example IDCT method to ease the

implementation community in their design of decoders
and encoders.

– To help ensure that decoders are implemented in
conformance with the standard, as those decoders that
are designed to use the specified method will be assured
to conform to the IDCT conformance requirements of
the relevant video coding standards.

– To improve the quality of delivered video, as encoders
designed to target their encoding process for the
specified IDCT method can be assured that the
decoding process will be free of drift on all decoders
that conform to the new standard.

The call for proposals (CfP) issued by MPEG [1]

requires that any candidate for the new standard must meet
or exceed certain accuracy thresholds relative to the integer-
valued IDCT, defined as follows:

7 7

0 0

(2 1) (2 1) 1[][] [][] cos cos ,
4 16 16
u v

u v

C C x u y v
f y x F v u

2
(1)

where:
1/ 2 for 0, otherwise 1,uc u

1/ 2 for 0, otherwise 1,vc v
F[v][u] are input DCT coefficients with values in
the range of [-2048, 2047].
f[y][x] are reconstructed pixel values.

The IDCT accuracy thresholds are defined for the

following metrics [1,2]:
p – maximum absolute difference between
reconstructed pixels (specification requires 1p);
d[x,y] – average differences between pixels
(specification requires | [for all
[x,y]);

,]| 0.015d x y

m – average differences between pixels
(specification requires: |); | 0.0015m
e[x,y] – average square difference between pixels
(specification requires | [for all
[x,y]);

,]| 0.06e x y

n – average of all square differences between
pixels (specification requires: |). | 0.02n

The CfP specifies that each of these metrics shall be
collected over randomly generated blocks of input. These
blocks are generated using a random block generator
defined in [2]. Results are collected over sets of 10,000
blocks and 1,000,000 blocks, where each set is generated
once for each of five different input ranges.

Beyond the above specifications, the call for
proposals [1] lists additional evaluation criteria, including
resources required for implementation on hardware and
software platforms, simplicity, etc.

The remainder of this paper will review our IDCT
design, submitted in response to call for proposals [1], and

I 11091424407281/07/$20.00 ©2007 IEEE ICASSP 2007

selected for the Working Draft 1 of this new standard [3].
Section 2 of this paper describes the architecture and
underlying factorization selected for our fixed-point design.
Section 3 elaborates on the methodology used to complete
the design. Section 4 provides the performance results for
the above testing process. Section 5 presents our summary.

x[2]

x[3]

x[4]

x[5]

x[6]

x[7] A7 X[7]

A0 X[0]

A4 X[4]

A2X[2]

A6 X[6]

A1 X[1]

A5 X[5]

A3 X[3]

2. ARCHITECTURE AND FACTORIZATION

In our IDCT, we adopt a scaled, separable architecture. The
key benefits of such an architecture include:

Lower multiplicative complexity due to merged
multiplications in a separate scaling phase.

Possible further reduction in complexity due to the
ability to merge the scaling operations in with
quantization processes in implementations of JPEG,
H.263 and MPEG-4 (Part 2) standards.

High precision due to the ability to minimize and
distribute errors of fixed-point approximations of
cosine multiplications within 1D transforms by
adjusting the scale factors.

We use a separate scaling step to pre-multiply all input
coefficients by a certain quantity C = 2P, serving as a fixed-
point “mantissa” for subsequent 1D IDCT computations. To
achieve even higher precision of scaling, we use S=P+R bits
to convert floating point scale factors to integers, and
execute shift right operations by R bits after multiplications.
In our proposed implementation, parameter S is chosen to
be 15 thereby facilitating simple implementations on
platforms with signed/unsigned 16-bit multipliers. To
achieve a proper rounding we add the quantity 2P-1 to the
DC coefficient right after scaling.

After scaling, we execute 16 iterations of our scaled 1D
IDCT over all columns and rows in the 8x8 matrix. This 1D
IDCT is implemented using only 16 shift and 42 addition
operations, and P=10 bits of added (during the scale step)
precision as the fixed-point “mantissa”. Finally, after the
cascade of 1D IDCTs we shift all quantities in the 8x8
matrix by P bits to the right.

The complete flow-graph of the factorization used in our
algorithm is presented in Fig. 1. It can be seen that generally
it is very similar to a well-known Arai, Agui, and
Nakajima’s (AAN)-factorization of scaled IDCT [4]. One
difference in our implementation is that the 3-multiplication
section in the odd part of the AAN design is replaced by a
butterfly, which turns out to be beneficial for multiplier-less
implementations.

The flow-graph of our IDCT factorization is shown in
Fig 1.

Fig 1. The flow-graph of a scaled 1D IDCT adopted in
proposal.

The values of the coefficients and scale factors in this flow-
graph are defined in Table 1 :

TABLE I. CONSTANTS USED IN PROPOSED IDCT

Constant Value
/ 4C cos / 4 0.707106781

3 /8C cos 3 / 8 0.382683432
3 /8S sin 3 / 8 0.923879533
0A 1 0.3535533906

2 2

1 A cos 7 /16
0.4499881115

2sin 3 / 8 2

2A cos /8
0.6532814824

2

3A cos 5 /16
0.2548977895

2 2cos 3 / 8

4A 1 0.3535533906
2 2

5A cos 3 /16
1.2814577239

2 2cos 3 /8

6A cos 3 /8
0.2705980501

2

7A cos /16
0.3006724435

2 2sin 3 / 8

In Fig. 2, we show a flow-graph of our fixed-point

implementation. In this flow-graph boxes 1, 1, 2, 2, ,
and denote fixed-point approximations of multiplications
by the corresponding constants in the original IDCT flow-
graph (cf. Fig 1). Note that the value corresponding to both
1 and 2 is 1.

x[0

x[1

C

C

C

S S
C

I 1110

Moreover in computing the implementation costs for
each candidate solution set (and defining final algorithms
for computing the products) we assume that some
intermediate values can be stored and subsequently reused.
This way we arrive at the algorithms shown in Table 2. For
example, the term x2 is computed once and reused to
compute both the values 3135 and 473 in our design. Reuse
of common expressions such as these can reduce the total
complexity in terms of addition operations, especially when
these expressions can be used to compute two constants
simultaneously.

x[2]

x[3]

x[4]

x[5]

x[6]

x[7] A7 X[7]

A0 [0]

A4 X[4]

A2X[2]

A6 X[6]

A1 X[1]

A5 X[5]

A3 X[3]

Fig 2. Flow-graph for fixed-point approximation of
scaled 1D IDCT.

3. FIXED-POINT DESIGN METHODOLOGY

To achieve our fixed-point design, we first separate the
irrational constants into two groups, based on the data
dependencies in the flow-graph shown in Fig. 2. Group 1
consists of constants 1 and 1 . Group 2 consists of
constants 2 2, , , and . By forming these groups, we
approximate each group separately thereby allowing us
additional degrees of freedom in determining the error we
will tolerate for each group.

Next, we employ a modified version of the bicriterial
optimization methods described in [5,6] to identify rational
approximations for each of the two groups. Using these
techniques, we arrive at a separate scale factor to be applied
to each group. As shown in Table 1 for this design of our
IDCT, the scale factor is the same for each group, but in
practice this is rarely the case.

Our modified bicriterial optimization approach searches
a candidate space of integer approximations for each
constant in each group, and factors out of each set of
integers a floating point constant that can be used as a
common factor for the entire group. This factor serves to
scale the worst case absolute error for the entire group of
approximations, so that we can weigh this error with the
implementation cost computed for the group in terms of
addition operations. In general, as the implementation cost
of a set of candidate approximations for a group goes up,
the associated worst case approximation error for that group
goes down. Hence, using these techniques we are able to
find the Pareto-optimal front of approximations, where each
approximation has a different number of required operations
and each approximation results in the minimum
approximation error for the corresponding number of
operations. For any approximation not in the front, there is
an approximation in the front such that it requires an equal
number of operations, but with approximation error that is
less than or equal to the error in the non-front
approximation being considered.

Next, we scale the approximations in each group and
correspondingly each group’s scale factor by a power of
two so that our approximations are now implemented as
dyadic rationals, i.e. with shift right operations instead of
shift left operations. The resulting group factors are then
folded directly into the original AAN scale factors shown
with Fig. 1 and defined in Table 2. These combined scale
factors are then converted to fixed-precision using the
parameter S.

4. PERFORMANCE RESULTS AND COMPLEXITY

ANALYSIS

As required in [1], we measure the performance of our
IDCT approximation by computing the metrics described
above. In Table III, we report the worst case results for
each of the metrics measured across all tests, (with the
exception of the maximum absolute difference between
reconstructed pixels which is 1.0 for all tests). We report
these metrics for our approximation with the fixed point
scale factors computed both with S=15 and S=16. Note that
the implementation chosen for the initial working daft of the
standard is the algorithm with identifier “A1” As shown in
the table, all results fall within the tolerances acceptable for
the new standard [3].

We report the complexity of our algorithm in Table III
in terms of 1D and 2D complexity. For 2D complexity, we
compute the total cost in terms of addition (denoted by ‘a’)
and shift (denoted by ‘s’) operations incurred over the
cascade of 16 iterations. To this sum, we add the complexity
of our scale step. The term bit-adds denotes the value
obtained by multiplying the number of addition operations
required by their required width in terms of bits.

4.1. Complexity of scaling step

We use the parameter ‘k’ to denote the number of nonzero
coefficients to which the scaling step is applied, and ‘m’ to
denote multiplication operations. The input data to the
IDCT process in video decoders originate from a list of non-
zero coefficients in the 8x8 block. For convenience, we
assume that there is a total of k such coefficients. In
practice, this number k is typically small.

x[0

x[1

I 1111

TABLE II. DETAILS OF FIXED POINT APPROXIMATIONS USED IN IDCT WITH 42 ADDITIONS AND 16 SHIFTS

Complexity C Original
Value

Rational
Approx.

Group’s
Scale factor

Algorithms:
x=x*[, ,];y=x* Add-s Shifts

1 1 x=x; 0 0
cos() 181/256

1.0000442471
x2=x+(x>>2); // 101
x3=x-(x2>>2); // 01011
x =x3+(x2>>6); // 010110101

3 3

1 1 1 x=x; 0 0
2 cos(/4) 181/256 x2=x+(x>>2); // 101

x3=x-(x2>>2); // 01011
x =x3+(x2>>6); // 010110101

3 3

 cos(3 /8) 3135/8192
 sin(3 /8) 473/512

1.0000442471

x2=x-(x>>4); // 01111
x3=x2+(x>>10); // 01111000001
x =(x-(x3>>2))>>1; // 00110000111111
y =x3-(x2>>6); // 0111011001

4 5

TABLE III. ACCURACY MEASUREMENTS AND COMPEXITY ANALYSIS

Algorithm Precision Complexity
1D ID S P max e[x,y]

(0.06)
N
(0.02)

max |d[x,y]|
(0.015)

M
(0.0015)

near
DC bit-adds Ops

2D (ops)

A1 15 10 0.01600 0.01030 0.00950 0.00039 0
A2 16 10 0.01380 0.00906 0.01070 0.00048 0 924 42a,16s km,673a,

(320+k)s

Since the first step in a scaled 2D IDCT architecture is

essentially a multiplication by scale-factors, these
multiplications can now be performed only for k non zero
coefficients. Therefore instead of executing 64
multiplications during the scaling stage, in a typical video
decoding scenario it would be sufficient to execute only k
multiplications which can be as small as 4 or 5.

In order to realize this savings, a decoder simply needs
to pass its list of non-zero coefficients to the transform. In
turn, transform scaling can be easily implemented in such a
way that it places the results of multiplications in the
appropriate locations in the 8x8 matrix, thereby preparing it
for the remaining stages in the transform.

Since inverse quantization and scaling essentially
perform successive multiplications of coefficients by known
constant factors (quantization parameter, factors from
weighting matrices, and IDCT scale factors), they can (in
most of instances) be simply merged into a single
multiplication by a pre-computed product of all involved
intermediate constants.

5. SUMMARY

This paper has shown that by application of the above
methodology in conjunction with a scaled architecture, we
can derive a low complexity fixed-point approximation of
the IDCT with accuracy sufficient to meet the requirements

of the accuracy standard [2]. Our algorithm A1 was
recognized as one having the lowest complexity among
submitted scaled IDCT proposals, and it was selected for
the Working Draft 1 of this new standard [3].

6. REFERENCES

[1] ISO/IEC JTC1/SC29/WG11 N7335, Call for Proposals on
Fixed-Point IDCT and DCT Standard, Poznan, Poland, July
2005.

[2] ISO/IEC JTC1/SC29/WG11 N7815 [23002-1 FDIS]
Information technology – MPEG video technologies – Part 1:
Accuracy requirements for implementation of integer-output
8x8 inverse discrete cosine transform.

[3] ISO/IEC JTC1/SC29/WG11 N7817 [23002-2 WD1]
Information technology – MPEG Video Technologies –
Part 2: Fixed-point 8x8 IDCT and DCT transforms.

[4] Y. Arai, T. Agui, and M. Nakajima, “A Fast DCT-SQ Scheme
for Images”, Transactions of the IEICE E 71(11):1095,
November 1988.

[5] N. Rijavec, A.T. Hinds, “Multicriterial Optimization
Approach to Eliminating Multiplications”, Proceedings of the
2006 8th IEEE Workshop on Multimedia Signal Processing,
2006, pp. 368-371.

[6] A.T. Hinds, and J.L. Mitchell, "A Fast and Accurate Inverse
Discrete Cosine Transform", Proceedings of the IEEE
Workshop on Signal Processing Systems, November 2005, pp.
87-93.

I 1112

