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ABSTRACT

This paper presents an efficient algorithm for computing the 
Inverse Discrete Cosine Transform (IDCT) for image and 
video coding applications.  This algorithm was submitted in 
response to MPEG’s call for proposals for ISO/IEC 23002-2 
(Fixed-Point 8x8 IDCT and DCT) standard, and was 
subsequently adopted in the Working Draft 1 of this 
standard.  Our proposed algorithm is a multiplication-free 
implementation. It is based on a modification of Arai, Agui, 
and Nakajima’s (AAN) factorization, and requires only 42 
addition and 16 shift operations per scaled 1D transform. 
Each register in our scaled 1D transform requires at most 22 
bits. This implementation complies with the MPEG IDCT 
precision specification ISO/IEC 23002-1.  
 
Index Terms — DCT, IDCT, factorization, multiplier-less 
algorithms 

1. INTRODUCTION 
 
The Moving Picture Experts Group (MPEG) is currently 
developing a standard for a fixed-point approximation of 
8x8 Inverse Discrete Cosine Transform (IDCT).  The use of 
this IDCT specification in implementing existing MPEG 
video coding standards (MPEG-1, MPEG-2, and MPEG-4 
part 2) should be voluntary and intends to offer the 
following benefits [1]: 
– Providing an example IDCT method to ease the 

implementation community in their design of decoders 
and encoders. 

– To help ensure that decoders are implemented in 
conformance with the standard, as those decoders that 
are designed to use the specified method will be assured 
to conform to the IDCT conformance requirements of 
the relevant video coding standards. 

– To improve the quality of delivered video, as encoders 
designed to target their encoding process for the 
specified IDCT method can be assured that the 
decoding process will be free of drift on all decoders 
that conform to the new standard. 

 

 
The call for proposals (CfP) issued by MPEG [1] 

requires that any candidate for the new standard must meet 
or exceed certain accuracy thresholds relative to the integer-
valued IDCT, defined as follows: 
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where: 
1/ 2  for 0, otherwise 1,uc u  

1/ 2  for 0, otherwise 1,vc v  
F[v][u] are input DCT coefficients with values in 
the range of [-2048, 2047].   
f[y][x] are reconstructed pixel values. 

 
The IDCT accuracy thresholds are defined for the 

following metrics [1,2]: 
p – maximum absolute difference between 
reconstructed pixels (specification requires 1p ); 
d[x,y] – average differences between pixels 
(specification requires | [  for all 
[x,y]); 

, ]| 0.015d x y

m – average differences between pixels 
(specification requires: | ); | 0.0015m
e[x,y] – average square difference between pixels 
(specification requires | [  for all 
[x,y]); 

, ]| 0.06e x y

n – average of all square differences between 
pixels (specification requires: | ). | 0.02n

The CfP specifies that each of these metrics shall be 
collected over randomly generated blocks of input.  These 
blocks are generated using a random block generator 
defined in [2].  Results are collected over sets of 10,000 
blocks and 1,000,000 blocks, where each set is generated 
once for each of five different input ranges.   

Beyond the above specifications, the call for 
proposals [1] lists additional evaluation criteria, including 
resources required for implementation on hardware and 
software platforms, simplicity, etc.  

The remainder of this paper will review our IDCT 
design, submitted in response to call for proposals [1], and 
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selected for the Working Draft 1 of this new standard [3].  
Section 2 of this paper describes the architecture and 
underlying factorization selected for our fixed-point design.     
Section 3 elaborates on the methodology used to complete 
the design.  Section 4 provides the performance results for 
the above testing process.  Section 5 presents our summary. 
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2. ARCHITECTURE AND FACTORIZATION 

 
In our IDCT, we adopt a scaled, separable architecture. The 
key benefits of such an architecture include: 

Lower multiplicative complexity due to merged 
multiplications in a separate scaling phase. 

Possible further reduction in complexity due to the 
ability to merge the scaling operations in with 
quantization processes in implementations of JPEG, 
H.263 and MPEG-4 (Part 2) standards. 

High precision due to the ability to minimize and 
distribute errors of fixed-point approximations of 
cosine multiplications within 1D transforms by 
adjusting the scale factors. 

We use a separate scaling step to pre-multiply all input 
coefficients by a certain quantity C = 2P, serving as a fixed-
point “mantissa” for subsequent 1D IDCT computations. To 
achieve even higher precision of scaling, we use S=P+R bits 
to convert floating point scale factors to integers, and 
execute shift right operations by R bits after multiplications. 
In our proposed implementation, parameter S is chosen to 
be 15 thereby facilitating simple implementations on 
platforms with signed/unsigned 16-bit multipliers.   To 
achieve a proper rounding we add the quantity 2P-1 to the 
DC coefficient right after scaling.  

After scaling, we execute 16 iterations of our scaled 1D 
IDCT over all columns and rows in the 8x8 matrix. This 1D 
IDCT is implemented using only 16 shift and 42 addition 
operations, and P=10 bits of added (during the scale step) 
precision as the fixed-point “mantissa”.   Finally, after the 
cascade of 1D IDCTs we shift all quantities in the 8x8 
matrix by P bits to the right.  

The complete flow-graph of the factorization used in our 
algorithm is presented in Fig. 1. It can be seen that generally 
it is very similar to a well-known Arai, Agui, and 
Nakajima’s (AAN)-factorization of scaled IDCT [4]. One 
difference in our implementation is that the 3-multiplication 
section in the odd part of the AAN design is replaced by a 
butterfly, which turns out to be beneficial for multiplier-less 
implementations.  

The flow-graph of our IDCT factorization is shown in 
Fig 1. 

 

 
Fig 1. The flow-graph of a scaled 1D IDCT adopted in 
proposal. 
 
The values of the coefficients and scale factors in this flow-
graph are defined in Table 1 : 

TABLE I. CONSTANTS USED IN PROPOSED IDCT 

Constant Value 
/ 4C  cos / 4 0.707106781  

3 /8C  cos 3 / 8 0.382683432  
3 /8S  sin 3 / 8 0.923879533  
0A  1 0.3535533906

2 2
 

1  A cos 7 /16
0.4499881115

2sin 3 / 8 2
 

2A  cos /8
0.6532814824

2
 

3A  cos 5 /16
0.2548977895

2 2cos 3 / 8
 

4A  1 0.3535533906
2 2

 

5A  cos 3 /16
1.2814577239

2 2cos 3 /8
 

6A  cos 3 /8
0.2705980501

2
 

7A  cos /16
0.3006724435

2 2sin 3 / 8
 

 
In Fig. 2, we show a flow-graph of our fixed-point 

implementation. In this flow-graph boxes 1, 1, 2, 2, , 
and  denote fixed-point approximations of multiplications 
by the corresponding constants in the original IDCT flow-
graph (cf. Fig 1).  Note that the value corresponding to both 
1 and 2 is 1. 
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Moreover in computing the implementation costs for 
each candidate solution set (and defining final algorithms 
for computing the products) we assume that some 
intermediate values can be stored and subsequently reused. 
This way we arrive at the algorithms shown in Table 2.  For 
example, the term x2 is computed once and reused to 
compute both the values 3135 and 473 in our design.  Reuse 
of common expressions such as these can reduce the total 
complexity in terms of addition operations, especially when 
these expressions can be used to compute two constants 
simultaneously.    
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Fig 2. Flow-graph for fixed-point approximation of 
scaled 1D IDCT. 

 
 

3. FIXED-POINT DESIGN METHODOLOGY 

To achieve our fixed-point design, we first separate the 
irrational constants into two groups, based on the data 
dependencies in the flow-graph shown in Fig. 2.  Group 1 
consists of constants 1  and 1 .  Group 2 consists of 
constants 2 2, , , and  .    By forming these groups, we 
approximate each group separately thereby allowing us 
additional degrees of freedom in determining the error we 
will tolerate for each group.   

Next, we employ a modified version of the bicriterial 
optimization methods described in [5,6] to identify rational 
approximations for each of the two groups.  Using these 
techniques, we arrive at a separate scale factor to be applied 
to each group.  As shown in Table 1 for this design of our 
IDCT, the scale factor is the same for each group, but in 
practice this is rarely the case.   

Our modified bicriterial optimization approach searches 
a candidate space of integer approximations for each 
constant in each group, and factors out of each set of 
integers a floating point constant that can be used as a 
common factor for the entire group.  This factor serves to 
scale the worst case absolute error for the entire group of 
approximations, so that we can weigh this error with the 
implementation cost computed for the group in terms of 
addition operations.   In general, as the implementation cost 
of a set of candidate approximations for a group goes up, 
the associated worst case approximation error for that group 
goes down.  Hence, using these techniques we are able to 
find the Pareto-optimal front of approximations, where each 
approximation has a different number of required operations 
and each approximation results in the minimum 
approximation error for the corresponding number of 
operations.  For any approximation not in the front, there is 
an approximation in the front such that it requires an equal 
number of operations, but with approximation error that is 
less than or equal to the error in the non-front 
approximation being considered.    

Next, we scale the approximations in each group and 
correspondingly each group’s scale factor by a power of 
two so that our approximations are now implemented as 
dyadic rationals, i.e. with shift right operations instead of 
shift left operations.  The resulting group factors are then 
folded directly into the original AAN scale factors shown 
with Fig. 1 and defined in Table 2.  These combined scale 
factors are then converted to fixed-precision using the 
parameter S. 

 
4. PERFORMANCE RESULTS AND COMPLEXITY 

ANALYSIS
 
As required in [1], we measure the performance of our 
IDCT approximation by computing the metrics described 
above.   In Table III, we report the worst case results for 
each of the metrics measured across all tests, (with the 
exception of the maximum absolute difference between 
reconstructed pixels which is 1.0 for all tests).  We report 
these metrics for our approximation with the fixed point 
scale factors computed both with S=15 and S=16.  Note that 
the implementation chosen for the initial working daft of the 
standard is the algorithm with identifier “A1” As shown in 
the table, all results fall within the tolerances acceptable for 
the new standard [3].  

We report the complexity of our algorithm in Table III 
in terms of 1D and 2D complexity.  For 2D complexity, we 
compute the total cost in terms of addition (denoted by ‘a’) 
and shift (denoted by ‘s’) operations incurred over the 
cascade of 16 iterations. To this sum, we add the complexity 
of our scale step.  The term bit-adds denotes the value 
obtained by multiplying the number of addition operations 
required by their required width in terms of bits.   
 
4.1. Complexity of scaling step 
 
We use the parameter ‘k’ to denote the number of nonzero 
coefficients to which the scaling step is applied, and ‘m’ to 
denote multiplication operations.   The input data to the 
IDCT process in video decoders originate from a list of non-
zero coefficients in the 8x8 block. For convenience, we 
assume that there is a total of k such coefficients. In 
practice, this number k is typically small.  

x[0

x[1
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TABLE II. DETAILS  OF FIXED POINT APPROXIMATIONS USED IN  IDCT WITH 42 ADDITIONS AND 16 SHIFTS 

Complexity C Original 
Value 

Rational 
Approx. 

Group’s 
Scale factor 

Algorithms: 
x=x*[ , , ];y=x*  Add-s Shifts 

1 1 x=x; 0 0 
cos( ) 181/256 

1.0000442471 
x2=x+(x>>2);          // 101 
x3=x-(x2>>2);         // 01011 
x =x3+(x2>>6);       // 010110101 

3 3 

1 1 1 x=x; 0 0 
2 cos( /4) 181/256 x2=x+(x>>2);          // 101 

x3=x-(x2>>2);         // 01011 
x =x3+(x2>>6);       // 010110101 

3 3 

 cos(3 /8) 3135/8192 
 sin(3 /8) 473/512 

1.0000442471 

x2=x-(x>>4);           // 01111 
x3=x2+(x>>10);      // 01111000001 
x =(x-(x3>>2))>>1; // 00110000111111 
y =x3-(x2>>6);        // 0111011001 

4 5 

TABLE III. ACCURACY MEASUREMENTS AND COMPEXITY ANALYSIS 

Algorithm Precision Complexity
1D ID S P max e[x,y] 

(0.06) 
N 
(0.02) 

max |d[x,y]| 
(0.015) 

M 
(0.0015) 

near 
DC bit-adds Ops 

2D (ops) 

A1 15 10 0.01600 0.01030 0.00950 0.00039 0 
A2 16 10 0.01380 0.00906 0.01070 0.00048 0 924 42a,16s km,673a, 

(320+k)s 
 

 
Since the first step in a scaled 2D IDCT architecture is 

essentially a multiplication by scale-factors, these 
multiplications can now be performed only for k non zero 
coefficients. Therefore instead of executing 64 
multiplications during the scaling stage, in a typical video 
decoding scenario it would be sufficient to execute only k 
multiplications which can be as small as 4 or 5. 

In order to realize this savings, a decoder simply needs 
to pass its list of non-zero coefficients to the transform. In 
turn, transform scaling can be easily implemented in such a 
way that it places the results of multiplications in the 
appropriate locations in the 8x8 matrix, thereby preparing it 
for the remaining stages in the transform.   

Since inverse quantization and scaling essentially 
perform successive multiplications of coefficients by known 
constant factors (quantization parameter, factors from 
weighting matrices, and IDCT scale factors), they can (in 
most of instances) be simply merged into a single 
multiplication by a pre-computed product of all involved 
intermediate constants. 

5. SUMMARY 
 
This paper has shown that by application of the above 
methodology in conjunction with a scaled architecture, we 
can derive a low complexity fixed-point approximation of 
the IDCT with accuracy sufficient to meet the requirements 

of the accuracy standard [2]. Our algorithm A1 was 
recognized as one having the lowest complexity among 
submitted scaled IDCT proposals, and it was selected for 
the Working Draft 1 of this new standard [3]. 
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