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ABSTRACT

We propose a multi-target tracking algorithm based on the Probabil-
ity Hypothesis Density (PHD) filter and data association using graph
matching. The PHD filter is used to compensate for miss-detections
and to remove noise and clutter. This filter propagates the first order
moment of the multi-target posterior (instead of the full posterior) to
reduce the growth in complexity with the number of targets from ex-
ponential to linear. Next the filtered states are associated using graph
matching. Experimental results on face, people and vehicle tracking
show that the proposed multi-target tracking algorithm improves the
accuracy of the tracker, especially in cluttered scenes.

Index Terms— Multi-target, tracking, PHD filter, Monte Carlo
methods, clutter.

1. INTRODUCTION

One of the major challenges in multi-target tracking is the estimation
of the number of targets and their position in the scene, based on a set
of uncertain observations. Uncertainty is due to noisy observations,
occlusions, and clutter.

The problem of noise affecting state estimation is usually ad-
dressed in single-target tracking by Kalman and Particle filters [1].
The extension of these algorithms to multi-target tracking is difficult
as the dimensionality of the state space is time variant. A possible
solution is to track each target separately by independently applying
single-target algorithms [2]. Another solution is to predefine a maxi-
mum number of targets (i.e., the dimensionality) and then to declare
a group of targets as hidden [3]. A more elegant solution is to con-
sider the multi-target set as a single meta target [4] and the observa-
tions as a single set of measurements of the meta sensor [5]. In this
case, the multi-target state can be represented by a Random Finite
Set (RFS), whose Bayesian propagation is similar to the single tar-
get case. However, the dimensionality of the target state still grows
exponentially with the number of targets. Also the approximation of
the RFS with Monte Carlo sampling requires a number of samples
that grows exponentially, thus making the propagation of the full
posterior unpractical. A less computationally intensive alternative
is to propagate the Probability Hypothesis Density (PHD) (i.e., the
first moment of the multi-target posterior)([4]). The integrals of the
PHD recursion can be approximated with the samples generated by
a Sequential Monte Carlo (SMC) method ([5]). As the PHD has the
dimensionality of the single-target state, efficient sampling requires
a number of particles that is proportional to the expected number
of targets, thus leading to linear complexity. The cost for the lower
complexity is that the PHD does not provide any information on the

∗The authors acknowledge the support of the UK Engineering and Physi-
cal Sciences Research Council (EPSRC), under grant EP/D033772/1

identity of the targets. Filtering techniques based on the PHD have
been tested on synthetic data [5, 6], 3D sonar data [7], feature point
filtering [8], and groups of humans detection [9]. As no data associa-
tion is performed [5, 6, 8, 9] nor the target size is estimated [7], none
of the above implementations can be applied to multi-target visual
tracking.

In this paper we propose a multi-target tracker based on PHD
filtering and graph matching for video object tracking in real-world
scenarios. The PHD filter is adapted to reduce clutter and noise
generated by common object detectors available for scene analysis.
Next, a modified K-means clustering that accounts for the SMC sam-
pling of the PHD is used to detect the peaks. Finally, the centers of
the clusters are the input of the data association algorithm based on
the maximum path cover of a bi-partitioned graph. The algorithm
is demonstrated on real world scenarios with two object detectors,
namely a motion detector and a face detector.

The paper is organized as follows. Sec. 2 introduces the Particle
PHD filter. Sec. 3 describes the clustering and data association meth-
ods. In Sec. 4 we show the results on surveillance and face tracking
scenarios. Finally in Sec. 5 we draw the conclusions.

2. THE PARTICLE PHD FILTER

Let us approximate the target area in an image with a w × h rect-
angle centered at y = (y1, y2). Let the state of a single target at
time k be xk = (y,v, w, h) ∈ Es, where v = (v1, v2) is the target
speed and Es is the single target space. Finally, let the single target
observation zk = (y, w, h) ∈ Eo be generated by an object detector
(e.g., a face detector or a motion detector). The corresponding multi-
target state Xk and measurement Zk are the finite collection of the
states and measurements of each target. If M(k) is the number of
targets in the scene at time k, then Xk =

{
xk,1, ...xk,M(k)

}
is the

multi-target state. Zk =
{
zk,1, ...zk,N(k)

}
is the multi-target mea-

surement formed by the N(k) observations, where some of these
observations may be due to clutter.

The uncertainty in the state and measurement is introduced by
modeling multi-target state and multi-target measurement with two
Random Finite Sets (RFS) Ξk and Σk. Ξk includes the information
related to multi-target interactions, single target motion, and appear-
ing or disappearing targets [4]. Similar to the single target case, the
dynamics of Ξk is described by the multi-target transition density
fk|k−1(Xk|Xk−1), while Σk is described by the multi-target likeli-
hood gk(Zk|Xk).

The Probability Hypothesis Density (PHD) Dk|k is the first or-
der moment of a RFS, defined as the density Dk|k(x) whose integral
on any region S of the state space gives the expected number of tar-
gets in S. The PHD is a function in the single-target state space
whose peaks identify the likely position of the targets. The Bayesian
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iterative prediction and update of Dk|k is known as the PHD filter.
The prediction operator, (Φk|k−1α)(x), is defined as

(Φk|k−1α)(x) =

∫
φk|k−1(x, ζ)α(ζ)λ(dζ) + γk(x), (1)

where α is any integrable function on Es; γk(x) is the intensity
function of the new target birth RFS (i.e., the integral of γk(x) over a
region S approximates the average number of new objects per frame
appearing in S); and φk|k−1(x, ξ) is the analogue of the state transi-
tion probability in the single target case:

φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x|ξ) + βk|k−1(x|ξ), (2)

where ek|k−1 is the probability that the target still exists at time k,
βk|k−1(x|ξ) is the intensity of the RFS that a target is spawned from
the state ξ, and fk|k−1(.|.) is the single target transition probability.

The update operator, (Ψkα)(x), is defined as

(Ψkα)(x) =

⎡
⎣pM (x) +

∑
z∈Zk

ψk,z(x)

κk(z) + 〈ψk,z, α〉

⎤
⎦ α(x), (3)

where pM (x) is the miss-detection probability; ψk,z(x) = (1 −
pM (x))gk(z|x), and gk(z|x) is the single target likelihood defining
the probability that z is generated by a target with state x; 〈f, g〉 =∫

f(x)g(x)dx, and κk(z) is the clutter intensity function.
The PHD filter combines the single target probabilities with the

other densities that model the interactions between multiple targets.
A numerical solution of the integrals is obtained using a SMC method
that approximates the PHD with a large set of weighted random sam-

ples (particles). Let the set {x(i)
k−1}i=1...Lk−1 of Lk−1 particles and

associated weights {ω(i)
k−1}i=1...Lk−1 approximate the PHD at time

k − 1. By substituting the Monte Carlo approximation of the PHD
(i.e., a finite sum of Dirac’s deltas) in Eq. (1) and Eq. (3), and devel-
oping the equations [5], the following procedure is derived. First a

new set {x̃(i)
k }i=1...Lk−1+Jk is generated by drawing Lk−1 sam-

ples from the importance function qk(.|x(i)
k−1, Zk); these samples

propagate the tracking hypotheses from the samples at time k − 1.
Then Jk samples are drawn from the new born importance function
pk(.|Zk), representing the state hypotheses of new targets appearing

in the scene. The predicted weights, ω̃
(i)

k|k−1, are defined as

ω̃
(i)
k|k−1 =

⎧⎪⎪⎨
⎪⎪⎩

φk

(
x̃
(i)
k

,x̃
(i)
k−1

)
ω

(i)
k−1

qk

(
x̃
(i)
k

|x̃(i)
k−1,Zk

) i = 1, ..., Lk−1

γk(x̃
(i)
k

)

Jkpk

(
x̃
(i)
k

|Zk

) i = Lk−1 + 1, . . . , Lk−1 + Jk

.

(4)
Once the new set of observations is available, the weights

{ω̃(i)

k|k−1}i=1...Lk−1+Jk are updated according to

ω̃
(i)
k =

⎡
⎣pM (x̃

(i)
k ) +

∑
z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)

⎤
⎦ ω̃

(i)

k|k−1, (5)

where Ck(z) =
∑Lk−1+Jk

j=1 ψk,z(x̃
(i)
k )ω

(j)

k|k−1.

At each iteration, Jk new particles are added to the old ones. To
limit the growth of the number of particles, Lk particles are resam-

pled from
{

ω̃
(i)
k /M̂k|k, x̃

(i)
k

}Lk+Jk

i=1
, where M̂k|k is the total mass.

Lk is chosen to keep the number of particles per target, ρ, constant.

At each time step, a new Lk is computed so that Lk = ρM̂k|k.
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Fig. 1. Visualization of the particles approximating the PHD on the
frame at the left when the faces are the targets.

Hence the complexity of the algorithm grows linearly with the num-
ber of targets in the scene. After resampling, the weights of set{

ω
(i)
k , x

(i)
k

}Lk

i=1
are normalized to preserve the total mass.

In our case, the original particle PHD filter ([5]) has to be adapted
to account for the two additional dimensions corresponding to w
and h. We define the state transition fk|k−1(x|ξ) assuming that
each target moves according to a first-order Gaussian dynamic on
the position and zero-order on the size. As larger objects (in the im-
age plane) usually accelerate faster than smaller objects in the same
scene, the intensity of the white Gaussian noise modeling acceler-
ation and change of size is proportional to the size of the target at
time k− 1. For simplicity no spawning of targets is considered. The
single-target likelihood gk(z|x) is a Gaussian N (z, Cz) centered on
the observation. The covariance matrix Cz is diagonal with standard
deviations proportional to the sizes w and h of each zk,i; the miss-
detection probability pM is uniform. The Lk−1 old particles are
propagated according to the dynamics, i.e. qk(.|.) ∝ fk|k−1(.|.).
While Jk new born particles are drawn from a mixture of Gaus-
sians centered on the observations Zk. The N(k) coefficients of
the mixture are set computing the cumulative masses M(zk,j) of
the propagated particles that are inside the 99% confidence interval
determined by the observation noise. Then, Jzk,j new born parti-
cles are allocated to each detection according to Jzk,j = Jmax(1 −
M(zk,j)), and Jk =

∑
j Jzk,j . The birth intensity γk(x) is uniform

around the parameters y, w and h, uniform on the velocity direction
and Gaussian on the amplitude.

3. CLUSTERING AND DATA ASSOCIATION

The PHD is represented by a set of particles {x(i)
k }i=0...Lk defined

in the single-target state space. An example of PHD approximated
by particles is shown in Fig. 1. The peaks of the PHD are on the

detected faces, and the mass M̂k|k ≈ 4 estimates the number of
targets. The weights of the particles are higher where the tracking
hypotheses are validated by consecutive detections. A clustering al-
gorithm is now required to detect the peaks of the PHD and then data
association will be applied on the cluster centers to perform tracking.

Particles are clustered with K-means, using a special procedure

to select the number of clusters. In fact, although M̂k|k estimates
the number of targets, it is not a good estimator of the number of
clusters, especially when targets are appearing or disappearing and
their total mass is smaller than 1. N(k) clusters are first initialized
on the N(k) observations with zero velocity. After convergence of

K-means, if M
(j)
k > 1 (i.e., the total mass of the samples in cluster j

is larger than 1) a new center is set on the cluster sample with largest
distance from the center. Next, K-means iterates until the condition
M

(j)
k < 1, ∀j is satisfied. Finally, clusters with M

(j)
k < T are

discarded, where T is a predefined threshold. The remaining centers
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Fig. 2. Examples of Particle PHD filtering (Filtered states) which removes cluttered detections (Detections), for example as in column (b,d,e).
Comparison of tracking results between the multi-target tracker with Particle PHD filtering (PHD-MT) and without (MT). The tracks are
color coded. As showed in column (e) and (f) PHD-MT successfully recovers the faces after a total occlusion without generating false tracks.

X̂k are selected as the output set of states used for data association.

The information contained in X̂k includes an estimate of the target
velocity and is therefore richer than that from the observations.

To obtain a consistent identity of a target over time, the cluster
centers are used as vertices in a graph matching procedure ([10]),

which is used for data association. Let a cluster center x̂k ∈ X̂k

be represented by a vertex v(x̂k) ∈ Vk of the graph G, where Vk is
the set of vertices representing the targets at time k. The tentative
associations between candidate targets at different time instants are
described by the gain associated with each edge in G. The graph
is formed by iteratively creating new edges from the old set of ver-
tices {Vk−j}j=1...K to the new set of vertices Vk associated to clus-
ter centers of frame k. The possible edge combinations represent
multiple track hypotheses, including miss-detections and occlusions
(i.e., edges between two vertices v(x̂k) and v(x̂k−j), with j > 1).
The path cover of G with the maximum gain identifies the best set
of tracks. We define the gain of the edge by log(f(x̂k|x̂k−j)). In
this case the optimal path cover maximizes the likelihood over the
possible sets of tracks represented by the edges in the graph. After
maximization, a new target is modeled by a vertex without back-
ward correspondence, whereas a disappeared target is modeled by
a vertex without forward correspondence. The maximum number
of consecutive occluded frames during which an object track can be
recovered is defined by the graph depth K, as discussed next.

4. EXPERIMENTAL RESULTS

We demonstrate the proposed tracker on real-world test sequences
with faces, people and vehicles. The face sequence is available at
http://www.elec.qmul.ac.uk/staffinfo/andrea/PHD-MT.html, while peo-

ple and vehicle sequences are from the VACE dataset [11]. Face de-
tections are generated with an Adaboost classifier [12], and people
and vehicle detections with a color based change detector [13]. The
sequences are converted to QCIF format and 25 Hz before process-
ing. The parameters used in the simulations are the same for all test
sequences. The multi-target tracker based on the particle PHD filter
(MT-PHD) is compared with the multi-target tracker (MT) where the
data association described in Sec. 3 is performed directly on Zk.

The parameters of the tracker are described in the following. The
particle PHD filter uses ρ = 1500 particles per target and Jmax =
1000 particles per detection. The standard deviations of the transi-
tion model are: σk,v1(wk−1) = 0.03wk−1; σk,v2(hk−1) = 0.03hk−1;
σk,w(wk−1) = 0.1wk−1; σk,h(hk−1) = 0.1hk−1. The standard
deviations of the Gaussian observation noise are: σz

k,w(wk−1) =
max(0.15wk−1, 1.0); σz

k,h(hk−1) = max(0.15hk−1, 1.0); σz
k,y1 =

σz
k,w/2; σz

k,y2 = σz
k,h/2. The birth intensity is 0.01 targets per

frame per detection. The intensity of clutter around the detections
is 1.0 clutter point per frame. T = 0.6 is used to accept the cluster
centers as real targets. The miss-detection probability PM = 0.05,
and the survival probability ek|k−1 = 0.99. For the data association
the depth of the graph is K = 50 frames, hence the algorithm is
capable of resolving occlusions for a maximum of 2 seconds on a 25
Hz footage. Tracks shorter than 5 frames are discarded.

Fig. 2 shows the results of the PHD filter on the face detections.
When false detections are processed (Fig. 2 (a)(b)(d)(e)(f)) the mass
of the PHD starts growing around them; however, multiple coherent
and consecutive detections are necessary to increase the mass to a
level greater than T . When the clutter is not persistent, the PHD fil-
ter successfully manages to remove it. The drawback of the filtering
is a slower response in detecting new real targets due to the trade-
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Fig. 3. Comparison of tracking results between the multi-target
tracker with Particle PHD filtering (PHD-MT) and without (MT).
False tracks due to clutter ((b) and (c)) are removed by PHD-MT.

off between clutter removal and response time. The particle PHD
also manages to smooth the errors in estimating the correct size of
the face (Fig. 2(c)(d)). Furthermore, Fig. 2 shows how the combi-
nation of PHD filtering with the graph-based data association is able
to recover the faces after a total occlusion: in Fig. 2 (e)(f) a face
is occluded by the other person, and data association successfully
links the tracks. Finally, the results of PHD-MT compared with MT
shows that false tracks due to clutter are removed by PHD-MT only
(Fig. 2 (e)(f)). Similar considerations can be done on the PHD-MT
used to process the output of the change detector (Fig. 3). In this
challenging situation, generated by a sudden change in illumination,
although the accuracy in recovering the size of the target is poor, the
heavy clutter is filtered by PHD-MT (Fig. 3(b)(c)). Furthermore, the
smoothing generated by the filtering allows the data association to
connect the target states.

Table 1 shows the comparative results of PHD-MT and MT ba-
sed on the VACE protocol [11], which is composed of four scores,
namely Multiple Object Detection Accuracy (MODA), Detection
Precision (MODP), Tracking Accuracy (MOTA), and Tracking Pre-
cision (MOTP). The evaluation based on the scores is performed on
sequences where ground-truth data are available. It is possible to no-
tice that PHD-MT outperforms MT for all the scores and sequences.
The improvement is larger when the tracking system is challenged by
clutter, that generates false detections to be removed (i.e. Seq102a03
and Seq201c01). In all sequences PHD-MT is more effective in re-
moving clutter than MT thus improving both precision and accuracy.

In terms of computational complexity the Particle PHD filter
uses 34% of the total computational power of the overall tracking
algorithm when used with the change detector, whereas clustering
and data association account for 2% only. The remaining 64% of the
time is spent on the change detector. When the face detector is used,
the percentages are 78% for the detector and 20% for the PHD fil-
ter. The full non-optimized tracking algorithm runs at an average of
6fps on a processor Pentium IV 3GHz. We expect that the overall al-
gorithm can achieve real-time performance with code optimization.

5. CONCLUSIONS

We presented a multi-target visual tracker that employs Particle PHD
filtering to remove clutter and miss-detections from noisy observa-
tions. The resulting set of particles is clustered by a modified K-
means adapted to the Particle PHD. To generate the final tracks the

Table 1. Comparison of tracking accuracy results between the multi
target tracker with (PHD-MT)(1) and without (MT)(2) PHD filter.

Seq. MODP MODA MOTP MOTA

(1) (2) (1) (2) (1) (2) (1) (2)
102a01 0.61 0.58 0.54 0.49 0.65 0.60 0.53 0.48

102a03 0.60 0.59 0.16 -0.58 0.60 0.57 0.15 -0.58
102a11 0.59 0.58 0.28 0.27 0.59 0.58 0.28 0.27
201c01 0.37 0.36 0.44 0.36 0.39 0.37 0.43 0.35

centers of the clusters are processed by a data association algorithm
based on graph matching. The proposed algorithm has the capabil-
ity to remove non persistent clutter, filter miss-detections, smooth
the tracks, and overcome short term occlusions. Experimental re-
sults over a set of real-world sequences show that the Particle PHD
Filter improves the robustness of the tracker to clutter by verifying
the coherence of consecutive sets of detections, without significantly
increasing the complexity of the overall algorithm. Future work in-
cludes the definition of a model of the merging and splitting of the
tracks that combines the capabilities of the PHD filter, with the in-
formation contained in the vertices of the graph.
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