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ABSTRACT

Gray-level based change detection is effective but suffers when
gray-levels of objects are similar to backgrounds. A color-
based gray-level compensation algorithm for fast change de-
tection is proposed in this paper. Based on the object scatter
estimation in difference frames, the gray-levels of the non-
signi cant pixels in object regions are compensated according
to their signi cance probabilities in color channels. Exper-
imental results show that the proposed method signi cantly
improve the quality of difference frames.

Index Terms— Image processing, image segmentation,
object detection, image color analysis

1. INTRODUCTION

Change detection (CD) is widely used in video processing. It
can be used to segment objects [1] to reduce noise [2] or to
compress videos [3]. Gray-level based CD is popular due to
its ef ciency, but it suffers when the foreground (objects) has
similar gray-levels as the background. For accurate CD, color
becomes more and more used [4, 5, 6, 7]. However, color-
based CD methods are, in general, computational expensive.
Most color-based CD are statistical based.

Durucan et al. [4] detect moving objects based on color
Gramian matrix, yet the Gramian-matrix based method is com-
putationally expensive and sensitive to artifacts. Stefano et al.
[5] propose a content-adaptive CD using image structure and
color. Since a hierarchical CD method is applied in all color
channels, the method is computationally expensive, and any
failures of CD in a color channel may affect the nal out-
put. Hwang et al. [6] model the noise in color channels as
a generalized exponential model (GEM), then they deduce a
statistical model of the Euclidean distance for unchanged re-
gions in a video. Change detection is performed based on an
energy minimization graph cuts methods. The method is also
computational expensive due to considerable iterative com-
putation in image spaces. Although Alexandropoulos et al.
[7] propose a statistic-based CD method for real-time appli-
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cations, the method is based on RGB color model, which does
not perform well for CD [8].

In this paper, we propose a color-based gray-level com-
pensation algorithm for fast CD using the Y UV color model
that overcome the dif culties of both the gray-level based CD
(accuracy) and the color-based CD (ef ciency). Section 2
describes the proposed algorithm. Experimental results are
given in Section 3, and Section 4 concludes this paper.

2. PROPOSED ALGORITHM

The proposed algorithm is based on the observation that a rec-
ognizable object in a color video sequence is different from
the background in at least one of the color channels Y , U ,
and V . The Y UV color model is applied for effective CD
[8]. Fig.1 shows the block diagram of the proposed algo-
rithm. First, three difference frames DY

n ,DU
n and DV

n are
obtained by CD (e.g., [1]) between the current frame Fn at
time instant n and its reference frame Rn in the Y,U and V

channels, respectively. Second, a regions of change (ROC)
scatter estimation method [9] is applied to DY

n to indicate the
blocks in DY

n that contain ROC. (The ROC scatter estima-
tion is based on the rst moment of block histogram.) Then,
based on the statistical model of the gray-level distribution
of DY

n under no-change hypothesis H0, a pixel-based signif-
icance test (Sec.2.2) is used to test if a pixel i in ROC blocks
is signi cantly different from background in DY

n . Based on
the signi cance test with a statistical model of the maximum-
intensity (MI) distribution between DU

n and DV
n under H0

(Sec.2.1), a gray-level compensation algorithm (Sec.2.3) is
applied to the pixels which are non-signi cant in ROC blocks
of DY

n but signi cant in DU
n or DV

n to generate gray-level
compensated difference frame DYc

n .
As shown in [10], the gray-level distribution of DY

n un-
der H0 can be modeled as a Gaussian random variable (RV)
Y with zero mean and variance 2σ2

ν due to frame differenc-
ing followed by taking absolute value, where σ2

ν is the noise
variance in Fn. The pdf of Y is then,

Y ∼ 2N(0, 2σ2
ν), Y ≥ 0. (1)
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Fig. 1. Block diagram of the proposed algorithm.

2.1. Maximum-intensity (MI) modeling inDU
n and DV

n

To avoid including the artifacts in color channels into the nal
difference frames, we take not only noise but also global (e.g.,
illumination changes) and local (e.g., shadows) artifacts into
account when modeling the MI distributions between DU

n and
DV

n underH0. First, we model the color intensity distribution
in DU

n and DV
n under H0. Note that only positive values in

DU
n and DV

n due to frame differencing followed by taking ab-
solute value. For precise signi cance-test, the tail sections of
the models must be consistent with the intensity distribution
of DU

n and DV
n under H0. In this paper, we model the inten-

sity distributions of DU
n and DV

n underH0 as two exponential
RVs U and V , respectively, i.e.,

U ∼ λue−λuu

V ∼ λve−λvv,
(2)

where λu and λv are the mean of the U and V , respectively.
Fig.2 shows an example of intensity modeling in DU

n and DV
n

underH0. As can be seen, the tail sections of the exponential
models are more consistent with the real intensity distribution
than the Gaussian models does underH0.

Let Z = max(U, V ), then under H0, the cumulative dis-
tribution function (cdf) of Z is

FZ(z|H0) = P [Z ≤ z|H0]
= P [max(U, V ) ≤ z|H0].

(3)

Since U and V are independent, and Z ≥ 0, we have

FZ(z|H0) =
∫∫

D(z)

pU (u)pV (v) dudv

= 1− e−λuz − e−λvz + e−(λu+λv)z,
(4)

where pU (u) and pV (v) are pdf of U and V shown in (2), and
D(z) are integral region for the function max(U, V ).
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Fig. 2. Intensity modeling underH0 (video “Hall”).

2.2. Signi cance test

Signi cance test is rstly performed in the ROC blocks of
DY

n . We regard a pixel i in DY
n with gray-level gi a signi cant

pixel if gi is high probable greater than Y , i.e.,

P [Y ≤ gi|H0] > ph, (5)

where ph is a high probability. From (1), we get

P [Y ≤ gi|H0] =

∫ gi

0

1√
2π
√

2σν

e
−

y
2

4σ2
ν dy <

ph

2
. (6)

(6) gives

Q

(
gi√
2σν

)
<

(
0.5− ph

2

)
, (7)

where Q(·) = 1−Φ(·), and Φ(·) is the standard Gaussian cdf.
We can determine if i is signi cant by testing if gi satis es
(7), e.g., for ph = 0.9975, (7) gives that i is signi cant if
gi > 4.27σν . (In this paper, σν is estimated by the noise
estimation method in [11].)

Similarly, signi cance test in DU
n and DV

n is performed by
testing if si = max(DU

n (i),DV
n (i)) is high probable greater

than Z, i.e.,
P [Z ≤ si|H0] > ph. (8)

From (4), we can determine if pixel i is signi cant in color
channels by testing if (9) is satis ed.

e−λusi + e−λvsi − e−(λu+λv)si < (1− ph). (9)

2.3. Gray-level compensation

The pixels which are non-signi cant in ROC blocks of DY
n

but signi cant in DU
n and DV

n , in general, belong to objects
yet have similar gray-levels with background. We compen-
sate the gray-levels of those pixels based on their signi cance
probabilities ps in color channels, where ps is

ps = FZ(si|H0), (10)

and si = max(DU
n (i),DV

n (i)). Thus, we compensate the
gray-level gi of a pixel i using

gc
i

= gi + ac ×Gs, (11)
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n .

where ac is a compensation coef cient that is determined by
ps, Gs is the gray-level that a signi cant pixel may have in
DY

n , gc
i

is the compensated gray-level of i, and gi is the orig-
inal gray-level of i in DY

n . In this paper, we use a quadratic
function to compute ac as

ac =

(
ps − ph

1− ph

)2

. (12)

We can see in (12), the more signi cant a pixel in color chan-
nels is, the higher the ps is, thus the higher the ac is.

The value of Gs is estimated by the statistical model of
the gray-level distribution of DY

n under change hypothesis
H1. Ten real-world videos with different contents and differ-
ent noise levels are used to statistically model the gray-level
distribution of DY

n under H1. Fig.3 shows the modeling re-
sult. As can be seen, the signi cant changes in DY

n can be
modeled as a Gaussian RV with pdf N(100, 152). We then
obtain 58 ≤ Gs ≤ 142 with the false alarm 0.0025. In this
paper, we set Gs = 93.

Using the proposed gray-level compensation, weak dif-
ferences (or changes) in DY

n that are caused by objects hav-
ing similar gray-levels as the background are converted (com-
pensated) to strong changes while weak changes caused by
artifacts (e.g., shadows) are not. Thus the proposed algo-
rithm compensates weak changes only inside object regions.
These regions are estimated by the region scatter estimation
[9] which is perfromed on difference frames {DY

n }.

3. EXPERIMENTAL RESULTS

The evaluation is performed by applying the gray-level based
CD method in [1] with and without the proposed gray-level
compensation algorithm to ve real-world videos containing
different contents. We apply the proposed method for CD
to segment moving objects (change masks) from stationary
background. To this end, we binarize DYc

n using [9] to obtain
binary frames {Bn}. Alexandropoulos et al.’s color-based
CD method [7], which is proposed for real-time surveillance
applications, is also used in our simulations as a reference
method. We used a background frame as Rn (see Fig.1).

Sample results are shown for indoor “Ekrlb” (678 frames
of size 360× 244), “2Meet” (691 frames of size 320× 240),

and “Putobj” (655 frames of size 320 × 240), and outdoor
“Road” (300 frames of size 352×288), and “Vnj” (293 frames
of size 360 × 244). The test videos used in simulations are
different from the training videos used for modeling the gray-
level distribution of DY

n underH1 in Sec.2.3.
Fig.4 and Fig.5 show the superiority of the proposed method.

The CD in [1] fails to detect changes for many frames of
“Ekrlb” and “2Meet” due to the similarities between objects
and background in gray-level. The CD in [7] is sensitive to
local changes (e.g., shadows). The [1] CD with the proposed
method get clear and stable change masks. In Fig.6, the [1]
CD loses the box in the lady’s hand, and mistakenly divides
an object into parts. The [7] CD suffers due to shadows. The
[1] CD with the proposed algorithm accurately detects all ob-
jects and generates complete change masks.

(a) (b) (c) (d)
Fig. 4. “Ekrlb”: (a) original F82 and F302, (b) - (d) masks of
[1], [7], and the [1] CD with prop. algorithm.

(a) (b) (c) (d)
Fig. 5. “2Meet”: (a) F231 and F473, (b) - (d) masks of [1],
[7], and [1] CD with the prop. algorithm.

(a) (b) (c) (d)
Fig. 6. “Putobj”: (a)F140 and F474, (b) - (d) masks of [1], [7],
and [1] CD with the prop. algorithm.

As shown in Fig.7 and Fig.8, the [1] CD includes con-
siderable gaps and holes into change masks due to the sim-
ilarities between objects and background in gray-level. The
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[7] CD is sensitive to local changes, e.g., shadows and partial
background movement. The proposed algorithm signi cantly
improve the performance of the [1] CD.

(a) (b) (c) (d)
Fig. 7. “Road”: (a) F115 and F145, (b) - (d) masks of [1], [7],
and [1] CD with the prop. algorithm.

(a) (b) (b) (c)
Fig. 8. “Vnj”: (a) F184 and F208, (b) - (d) masks of [1], [7],
and [1] CD with the prop. algorithm.

Without performing complex CD in all color channels of a
video, the proposed method improves the quality of gray-level
CD while it slightly increase the computation time. Under
Linux OS using C++, the average computation time of the [1]
CD with and without the proposed algorithm for CIF videos
is 0.0483s and 0.0456s per frame (including thresholding),
respectively. The method in [7] requires 0.0518s per frame.

4. CONCLUSION

A color-based gray-level compensation algorithm is proposed
for fast change detection in this paper using the Y UV color
model. Under no-change hypothesis, the gray-level distribu-
tion of Y channel and the maximum-intensity distribution in
U and V channels are statistically modeled. Based on the es-
timation of object-regions, pixel-based signi cance tests are
performed in Y,U and V channels using the statistical mod-
els. The gray-levels of non-signi cant pixels belonging to
object-regions are compensated based on their signi cance
probability if they are signi cant in color channels. Exper-
imental results show that the proposed algorithm can signif-
icantly improve the quality of difference frames without sig-
ni cantly increasing the computation time.

This study shows that color information signi cantly im-
proves the change detection in cases where objects have sim-
ilar gray-levels as the background. It also shows that com-
plex operations are not necessarily need to be performed in

all color channels when using color information in video pro-
cessing.
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