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ABSTRACT 

This paper describes a hierarchical analysis framework for 
image sequences. Region merging schemes traditionally 
used in the construction of partition hierarchies are extended 
to multiple frames using trajectory merging criteria. The 
merging criteria assess homogeneity among features 
throughout the entire sequence to recursively create 
partitions in the spatio-temporal domain. We propose 
similarity measures using long-term affine and translational 
motion features. Furthermore, the analysis of connectivity 
relations and the algorithm  implementation over Trajectory 
Adjacency Graphs allow the generation of partition sets 
containing temporally consistent objects characterized by 
coherent motion. Lastly, we introduce the novel Trajectory 
Tree as a single, hierarchical representation of the partitions 
generated for the complete sequence. Experimental results 
are provided, illustrating the usefulness of the approach. 

Index Terms— Sequence analysis, hierarchical video 
representation, region merging 

1. INTRODUCTION 

Several proposals in literature have been dedicated to the 
segmentation of image sequences. In such medium, the 
segmentation methods generally employ spatial and 
temporal features in defining image partitions. Starting from 
an over-segmented partition, works such as [1] and [2] use 
motion information to guide an independent region merging 
strategy for each frame. When dealing with image 
sequences, however, the temporal coherency between 
frames must be respected. In [3], watershed segments in the 
current frame are merged according to motion features and 
then projected onto the subsequent frame, establishing 
temporal links (tracking) and constraining future 
segmentation as well. Note that the temporal features used 
in the previous proposals are short-term in nature: only 
motion or partition projections between consecutive frames  
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are taken into account. In order to fully exploit temporal 
information available in the entire image sequence, both [4] 
and [5] propose a two-level algorithm. First, an initial color-
based partition is tracked across frames. Then, the spatio-
temporal regions or volumes formed via tracking are 
merged according to their motion features over multiple 
frames.  

In this paper we present a bottom-up, multi-scale 
segmentation scheme for image sequences along with an 
efficient hierarchical representation. The proposal has the 
following advantages: 

 A complete bottom-up analysis containing temporally 
coherent partition hierarchies for every frame, focusing 
on the use of  long-term motion and structural features. 

 A single, hierarchical representation for the entire image 
sequence, allowing efficient storage and access to the 
various resolution levels and offering greater flexibility 
for segmentation, filtering and indexing applications.  

Our approach is similar to [4] and [5] in their use of long-
term temporal features. The proposed hierarchical 
representation is closely related in its creation and structure 
to the Binary Partition Tree introduced in [6]. The work 
presented herein extends proposals from [7] and introduces 
original long-term motion analysis and representations.  

As depicted in the block diagram of Fig. 1, the approach 
consists of two main processing steps which define the set 
of regions contained in the hierarchical representation. 
Given a color image sequence and motion information in 
the form of dense optical flow [8], the Partition Sequence 
Initialization block is responsible for the formation of what 
is called a tracked partition sequence, meaning that regions 
are temporally linked or labeled across frames, thus forming 
Trajectories. This block is reviewed in Section 2. Next, 
connectivity constraints as well as long-term motion 
features are considered by the Trajectory Merging 
Algorithm. The algorithm recursively proposes a hierarchy 
of partition sequences and is discussed in Section 3. Lastly, 
given the initial tracked partition sequence and a merging 
order, a hierarchical representation referred to as the 
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Trajectory Tree is developed in Section 4. Experimental 
results and conclusions are presented in Sections 5 and 6, 
respectively.  
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Fig. 1 Block diagram of the recursive segmentation technique used 
in generating a hierarchical representation for the image sequence. 

2. PARTITION SEQUENCE INITIALIZATION 

The initial partition sequence is formed with the tracking 
algorithm described in [7] and is briefly reviewed in this 
section. The algorithm is responsible for tracking a set of 
regions homogeneous in color and coherent in terms of 
affine motion models between consecutive frames (short-
term coherence). This set of regions will form the finest 
level within the final hierarchical representation. 

Partition tracking is a recursive algorithm and relies on the 
projection of a previous partition Pt-1 onto the current frame. 
Given a set of dense motion vector estimates [8], an affine 
model is used to forward motion compensate each region 
Ri

t-1 Pt-1. Compensated regions are accommodated to a 
fine color-based partition of the current frame via fitting 
procedure. The resulting markers inherit the region labels 
from frame (t-1) while areas not covered by compensation 
or fitting are labeled as uncertainty. An example of this 
mechanism for Foreman frames #0-1 is shown in Fig. 2.  

A color-based region merging procedure is used to grow the 
projected markers over the uncertainty areas. Region 
merging proceeds until a termination PSNR is reached for 
the partition. Any remaining regions are assigned new 
labels. Regions of the resulting partition whose affine 
models present large residuals are subject to motion-based 
splitting. This mechanism allows the introduction of motion 
boundaries across regions homogeneous in color. The 
algorithm is initiated with a color-based partition and 
iterated for all consecutive pairs of frames in the sequence. 

         
  (a)         (b)      (c) 

Fig. 2 (a) sample partition P0, (b) markers for frame #1 after 
compensation and fitting, (c) tracked partition P1. 

3. TRAJECTORY MERGING ALGORITHM 

The temporal links established via partition tracking allow 
segmentation algorithms to access long-term spatio-
temporal features. In order to efficiently process the 

sequence, regions under a common label i are grouped into 
trajectories (Ti) such that: 
                                tRRT t

i
t
ii ,| .                         (1) 

Trajectories are assumed to be temporally connected and 
form the primitives used by the merging algorithm and in 
the final hierarchical representation. 

3.1. Trajectory Merging and Splitting 

The trajectories of a partition sequence are represented 
within a Trajectory Adjacency Graph (TAG). This data 
structure was initially introduced in [7] and here it is 
extended and further justified. Two trajectories Ti and Tj are 
said to be adjacent if Ri

t and Rj
t co-exist in at least one 

frame and are neighbors in every frame they co-exist in. The 
TAG contains a node for each trajectory and a weighted link 
connecting adjacent trajectories. The trajectory merging 
algorithm proceeds by removing the link of the TAG with 
the largest similarity (Section 3.2), merging Ri

t and Rj
t in 

every frame they co-exist in, and updating the TAG 
accordingly. 

Merging operations propose new trajectories based on an 
assessment of inter-trajectory homogeneity.  
Complementary splitting operations are introduced to act 
upon temporal inconsistencies within each trajectory. 
Trajectories presenting a large relative area difference 
between regions in consecutive frames (typically 100%) are 
temporally split at the instant of maximum difference. 
Judicious splitting can improve homogeneity assessments 
and correct connectivity flaws as illustrated in the example 
of Fig. 3.  
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Fig. 3 Initial partition sequence with disconnected TAG (bottom 
row) and subsequent temporal splitting and merging operations. 

3.2. Long-term Motion Similarity 

Two distinct motion-based trajectory similarity measures 
are defined in this paper. The first measure (ST_aff) is aimed 
at identifying groups of trajectories undergoing similar 
affine motion. The second measure (ST_trans) focuses on 
translational motion. The measures may be applied 
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sequentially in a merging algorithm thus forming groups of 
affine components which present a common translational 
motion. For instance, merging of the wheels and body of a 
car. 

Affine trajectory similarity (ST_aff) is a temporal average of 
motion affinity between adjacent regions in the Displaced 
Frame Difference (DFD) space. Let AR be the 6-parameter 
affine model for a region R determined via least squares 
fitting over the optical flow estimates and d(AR, p) the 
modeled motion vector for each pixel p R. (Superscripts 
of R indicating time are omitted for conciseness.) The 
average incremental modeling error committed by adopting 
a new motion model is given by: 

       ||/)),(),((),( RRDFDRDFDRE R
newnew AAA          (2) 

where    
Rp

Rk
tt

R ppIpIRDFD )),(()(),( 1 AdA  

and |R | is the area. The affine similarity measure between Ri 
and Rj tests whether ji RRR  is best modeled by iRA , 

jRA  or a new model AR derived from the entire support:  

      
))},(),,(max(

),,(),,(min{),,(

RjRi

iRjjRijiaff

RERE

REREtRRS

AA

AA
.          (3) 

The evaluation of Saff(Ri,Rj,t) also indicates which of the 
models should be adopted when updating R. The range of 
choices offers greater resilience to motion estimation errors 
in particular for small regions along motion boundaries. 
Finally, the trajectory similarity is the maximum value using 
a sliding window )( : 

    jijiaffjiaffT RRttRRSTTS ,|))},,((max{),(_ .    (4) 

The maximum operator detects motion dissimilarities and 
enforces them throughout the entire analysis interval. This, 
for example, allows objects that have presented movement 
in other frames but are currently static to be properly 
segmented. Sliding window size is usually 1/5 of sequence 
duration. 

Translational trajectory similarity (ST_trans) emphasizes 
robustness rather than accuracy. It is evaluated directly in 
the motion parameter space. Let BR be the translational 
model comprised of the median x and y component values 
of the estimated optical flow for region R. The region 
similarity measure, defined with the Euclidean distance, and 
the trajectory similarity are, respectively: 
                      jRiRjitrans tRRS BB),,(                              (5) 

 jijitransjitransT RRttRRSTTS ,|))},,((max{),(_ .   (6) 

4. HIERARCHICAL REPRESENTATION 

The Trajectory Tree is proposed as the hierarchical 
representation for the set of partition sequences obtained 

with the Trajectory Merging Algorithm. Each node of the 
tree represents a trajectory and the links connect merged 
trajectories with their results. Due to the inclusion of 
splitting operations, the leaves of the tree are formed by 
relabeling the initial partition sequence in terms of the finest  
among all trajectories. Consider, for example, the merging 
procedure initiated in Fig. 3 and culminating with a single 
trajectory for the entire sequence support (root node). The 
associated Trajectory Tree and partition sequence of leaf 
nodes are shown in Fig. 4. 
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Fig 4. Partition sequence of leaf nodes and the Trajectory Tree. 

The Trajectory Tree is binary in nature, encoding all the 
merging operations executed over an initial partition 
sequence. Its nodes contain video objects defined through 
the applied homogeneity criteria. Partitions of various 
resolutions can be easily accessed by moving up or down 
through the various node levels. Sophisticated processing 
techniques such as prunning or propagation [6] may also be 
applied to the Trajectory Tree. 

5. RESULTS 

Trajectory Trees and their most significant trajectories are 
presented for Foreman QCIF [0,30] and Table Tennis CIF 
[0,22] sequences. The sequence of leaf nodes (initial 
partition sequence, see Section 2) for Foreman is shown in 
Fig. 5. The partition of Fig. 2(a) containing 40 regions was 
used to initiate the tracking procedure [7] responsible for 
generating a total of 79 initial trajectories (leaves). Merging 
order between trajectory pairs was established with ST_aff  
until the 40th merging operation after which ST_trans was 
used. Video objects of interest presenting the largest motion 
dissimilarities can be easily identified in the upper nodes of 
Fig. 5. The head for frames [0,30] is one of the last two 
nodes along with a node containing background, shoulders 
(shown in Fig. 5) and Siemens sign (not shown). Note that 
the shoulder was not completely separated from the 
background in the initial partition. The additional use of 
translational-based similarity allows trajectories which may 
not be adequately modeled by affine parameters to be 
grouped together. Figs. 7(a) and (b) present nodes of a 
Trajectory Tree generated with affine similarity only. Note 
that the helmet is merged to the background and the most 
significant head node is that of Fig. 7(b). The corresponding 
instance of nodes from Fig. 5 are repeated in Fig. 7(d) and 
(e) for comparison purposes. 
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A total of 53 leaves are contained in the initial partition 
sequence for Table Tennis in Fig. 6. The rigid motions 
allowed the Trajectory Tree to be generated exclusively 
with  ST_aff. The top three nodes correspond to the ball, 
background and paddle+arm for frames [0,22]. The latter 
node may be decomposed into segments of greater affine 
similarity:  paddle, upper arm and lower arm (see Fig. 6). 
Note that the upper arm is almost static in several frames. In 
this case, affine-based merging without the use of long-term 
information merges the arm to the background before 
merging it to the paddle as in Fig. 7(c). The complete 
partition sequences and other examples are available at 
http://gps-tsc.upc.es/imatge/_Camilo/icassp07. 
 

 
Fig. 5 Trajectory Tree for Foreman [0, 30] and selected node 
instances at frames #0,15,30. 

 
Fig. 6 Trajectory Tree for Table Tennis [0, 22] and selected node 
instances at frames #0,10,22. 

         
                (a)                            (b)                              (c) 

         
                   (d)                            (e)                              (f) 

Fig. 7 (a), (b) Selected trajectory intances (frame #10) for Foreman 
[0,30] generated only with ST_aff  and (d),(e) generated with  ST_aff + 
ST_trans .  (c) Trajectory instance (frame #9) for Table Tennis when 
analyzing frame [8,9] only and (f) when analyzing [0,22]. 

6. CONCLUSIONS 

In this work we have proposed the use of trajectories and 
long-term motion features for the bottom-up analysis of 
image sequences. The Trajectory Tree has been introduced 
as an efficient hierarchical representation of the partition 
sequences obtained with our merging algorithm. Currently 
we are investigating the use of MPEG-7 and other trajectory 
descriptors for sequence indexing and filtering applications 
on the Trajectory Tree. 
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