
AN IMPROVED SPATIOGRAM SIMILARITY MEASURE
FOR ROBUST OBJECT LOCALISATION
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ABSTRACT

Spatiograms were introduced as a generalisation of the com-
monly used histogram, providing the exibility of adding spa-
tial context information to the feature distribution information
of a histogram. The originally proposed spatiogram com-
parison measure has signi cant disadvantages that we detail
here. We propose an improved measure based on deriving the
Bhattacharyya coef cient for an in nite number of spatial-
feature bins. Its advantages over the previous measure and
over histogram-based matching are demonstrated in object
tracking scenarios.

Index Terms— Image matching, Image pattern recogni-
tion, Tracking

1. INTRODUCTION

Histograms have been widely used as descriptors for image
regions. All spatial information is discarded and only feature
occurrence counts are retained. Spatial information may be
important for some applications, such as object tracking, and
a descriptor that retains some spatial information is desirable.
Spatiograms [1] are one such descriptor. As well as object
tracking, they have also been shown to be useful in image
clustering and data fusion. In this paper, we derive a new spa-
tiogram similarity measure that is superior to the previously
proposed measure, and provide theoretical and practical ex-
amples to justify its use.

This paper is organised as follows: In section 2, we review
related work on spatiograms and other feature-spatial distri-
bution models; section 3 contains a brief overview of spa-
tiograms and the drawbacks of using the original similarity
measure; we derive our new measure in section 4; in section
5, we demonstrate experimentally the advantages of our new
measure over existing measures and give our conclusions in
section 6.
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Funded by the National Development Plan. The authors would also like to
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2. RELATED RESEARCH

Many descriptors have been proposed for object modelling
in order to provide robust tracking in video sequences. His-
tograms [2, 3, 4] have commonly been used for tracking, as
they discard spatial information and are therefore insensitive
to small object pose changes. At the other extreme, image
templates [5], which impose rigid spatial contraints on fea-
ture layouts, have also been used. In [6], Elgammal et al. pro-
vide a parametric feature-spatial distribution model for ob-
ject modelling. A spatial kernel bandwidth parameter must
be supplied, to tradeoff between rigid and no spatial con-
straints. Spatiograms [1] generalise the histogram to allow
higher-order spatial moments to be part of the descriptor. Spa-
tiograms have been shown to be useful in head tracking [1],
in fusing features of different modalities for multi-spectral ob-
ject tracking [7] and in image clustering for retrieval [8].

3. REVIEW OF SPATIOGRAMS

3.1. Spatiogram models

As well as histograms of feature occurrences, spatiograms
also capture higher-order spatial moments. A 2nd-order spa-
tiogram model of an object is identical to a histogram of its
features, except that it also stores additional spatial informa-
tion, namely the mean and covariance of the spatial position
of all pixels that fall into each histogram bin.

To compute a normalised histogram for a target image of
N pixels, we write the histogram bin count, nb, of bin b as:

nb = C
N∑
i=1

δib (1)

where δib = 1 if the ith pixel falls in the bth bin and δib = 0
otherwise. The normalising constant, C, ensures than all bins
sum to one (i.e.

∑B
i=1 ni = 1). For 2nd-order spatiograms,

the spatial mean, μb, and covariance, Σb, also need to be com-
puted for each bin:

μb =
1∑N

j=1 δjb

N∑
i=1

xiδib (2)
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Σb =
1∑N

j=1 δjb

N∑
i=1

(xi − μb)(xi − μb)T δib (3)

where xi = [x,y]T is the spatial position of pixel i. To com-
pare regions of different sizes, it is necessary to map the spa-
tial coordinates to the same scale; for example, by mapping
coordinates into the [−1,+1] range. Additionally, in order to
ensure that each Σb is invertible, we force them to be diago-
nal, and set a minimum variance value to one pixel.

3.2. Comparing Spatiograms

To compare two spatiograms, S = {n, μ,Σ} and S
′
=

{n′
, μ

′
,Σ

′}, each with B bins, the following similarity mea-
sure is used in [1]:

ρ(S, S
′
) =

B∑
b=1

ψb

√
nbn

′
b (4)

where ψb is the spatial similarity measure, given by:

ψb = ηexp
{
−1
2
(μb − μ′

b)
T Σ̂−1b (μb − μ′

b)
}

(5)

where η is the Gaussian normalisation term, and Σ̂−1b = (Σ−1b
+ (Σ

′
b)
−1), so that the distance between the spatial means is

normalised to the average of the two Mahalanobis distances.
We will term this similarity measure the original measure.

3.3. Disadvantages of the original measure

The original similarity measure has two main disadvantages.
Firstly, it is not tolerant of small spatial changes of the fea-
tures. This is clear from the Σ̂b term, whose value is less
than either of the individual variances. This means that small
spatial changes are heavily punished by the original measure.
Secondly, a good similarity measure should have the prop-
erty that if an image region spatiogram is compared to itself,
the measure should return its maximal value. This is not true
of the original measure. With N(x;μ,Σ) representing a nor-
malised Gaussian evaluated at x, we write the similarity be-
tween a spatiogram and itself:

ρ(S, S) =
B∑
b=1

√
n2b
[
N(μb;μb, (2Σ−1b )−1)

]

=
B∑
b=1

nb
2π|(1/2)Σb|1/2 =

B∑
b=1

nb
π|Σb|1/2

This shows that comparing a spatiogram to itself does not
equal a constant. Indeed, with the original similarity measure,
it is possible for a patch which is different from the target
patch to be a better match to the target, than the target itself!
This is because the normalisation constant of the original sim-
ilarity measure adds more weight to spatially-tighter feature

clusters. This leads to a non-smooth similarity surface, which
often has many spiked peaks. We overcome this dif culty by
deriving a new similarity measure in the next section.

4. PROPOSED MEASURE

To derive our new similarity measure, we leverage the fact
that we can convert the 2nd order spatiogram back to a his-
togram, adding an extra dimension of space. For bin b, we
divide its contents, nb, over an in nite number of spatial bins,
nb,k, where k is an integer ranging from −∞ to +∞. We
express this as:

nb,k =
nbφb(kΔw)Δw∑+∞
i=−∞ φb(iΔw)Δw

(6)

where Δw is the spatial size of each bin and φb is a nor-
malised Gaussian with the mean and covariance of bin b. Since
we can now (theoretically) create a histogram from any spa-
tiogram, we can now compare spatiograms using the Bhat-
tacharyya coef cient [2]. This has a relationship with the
probability of Bayes error [9], and therefore is more similar to
a probability than equation (4). Given two spatigrams (con-
verted to histograms), nb,k and n

′
b,k, we compare them using

the Bhattacharyya coef cient as follows:

ρ(n, n
′
) =

B∑
b=1

+∞∑
k=−∞

√
nb,kn

′
b,k

=
B∑
b=1

+∞∑
k=−∞

√√√√( nbφb(kΔw)Δw∑+∞
i=−∞ φb(iΔw)Δw

)
√√√√( n

′
bφ

′
b(kΔw)Δw∑+∞

i=−∞ φ
′
b(iΔw)Δw

)

As Δw → 0, the denominators of both fractions disappear,
since φb and φ

′
b are both normalised Gaussians, therefore:

+∞∑
i=−∞

φb(iΔw)Δw ≈
∫ +∞
−∞

φb(x) dx = 1

This gives:

ρ(n, n
′
) =

B∑
b=1

√
nbn

′
b

∫ +∞
−∞

√
φb(x)φ

′
b(x) dx (7)

This can be simpli ed further by noting that the product of
two Gaussians is Gaussian, and also that the square-root of a
Gaussian is Gaussian. The resulting Gaussians are not nec-
essarily normalised, however, and therefore do not usually
integrate to one. We are left with constant terms which can
be thought of as weights for each bin comparison. Given that√
N(x; a,A) = qN(x; a, 2A), with q = 2(2π)m/4|A|1/4
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for m dimensions, and N(x; a,A)N(x; b,B) = zN(x; c, C)
with z = N(a; b, A + B), we can simplify equation (7) to
produce our compact new measure:

ρ(n, n
′
) =

B∑
b=1

√
nbn

′
b

∫ +∞
−∞

√
zbφ̂b(x) dx

=
B∑
b=1

√
nbn

′
b

√
zb

∫ +∞
−∞

√
φ̂b(x) dx

=
B∑
b=1

√
nbn

′
b

√
zb

∫ +∞
−∞

qb
ˆ̂
φb(x) dx

=
B∑
b=1

√
nbn

′
b [qb

√
zb]

=
B∑
b=1

√
nbn

′
b

[
qb

√
N(μb;μ

′
b,Σb +Σ′

b)
]

=
B∑
b=1

√
nbn

′
b

[
qbQbN(μb;μ

′
b, 2(Σb +Σ

′
b))
]

where φ̂b and ˆ̂
φb are normalised Gaussians. Terms qb and Qb

are given by

qb = 2
√
2π
∣∣∣Σb +Σ

′
b

∣∣∣1/4
Qb = 2

√
2π
∣∣∣(Σ−1b + (Σ

′
b)
−1)−1

∣∣∣1/4
Noting that qbQb = 8π|ΣbΣ′

b|1/4, our nal similarity mea-
sure becomes:

ρ =
B∑
b=1

√
nbn

′
b

[
8π|ΣbΣ′

b|1/4N(μb;μ
′
b, 2(Σb +Σ

′
b))
]

(8)

4.1. Analysis of the new measure

Firstly, comparing equations (4) and (8), of the old and new
measures respectively, it is clear that the new measure is more
tolerant of small spatial changes, as the covariance is equal
to twice the sum of individual covariances. Secondly, If we
compare two identical spatiograms using the new measure,
we obtain:

ρ =
B∑
b=1

√
n2b8π|Σb|1/2N(μb;μb, 4Σb)

=
B∑
b=1

8πnb
|Σb|1/2

2π|4Σb|(1/2) =
B∑
b=1

nb = 1

This shows that any spatiogram compared to itself will always
receive a similarity score of 1 using the new measure, which
is its maximal value.

5. EXPERIMENTAL RESULTS

The plot in gure 1 shows the effect of noise on our pro-
posed spatiogram similarity measure, compared to the orig-
inal measure and to histogram similarity. The original simi-
larity score is normalised by dividing by its maximum value
so that it reaches a value of one at zero noise. The image we
used (top right corner of gure 1) was selected as it contained
pixel clusters with different variances. Adding Gaussian noise
causes a sharp decrease in the similarity score of the original
measure, due to its intolerance of small spatial changes. His-
togram based matching is quite insensitive to noise and even
returns a relatively high matching score when the original im-
age is lost in the noise signal. Our proposed measure has a
linear response within a large window of added noise.

Figure 2 shows the similarity surfaces generated by (c)the
original measure, (d)histogram matching and (e)our proposed
measure for two tracking examples, corresponding to local-
ising a rigid highly-textured object (a book) and a non-rigid
human object (a football player). In the top row of g 2(c)
the original measure produces a spiked similarity surface and
nds the best match on the ball, instead of the player. This

is because it weights bins with low variances higher, such as
the tightly clustered white pixels of the ball. Its surface in g
2(c), bottom row, is also not very smooth, but it correctly lo-
calises the book. Figure 2(d) shows the histogram similarity
surfaces. Since it contains no spatial information, it provides
poor object localisation, as can be seen by its poor lock on the
book in g 2(b). Our proposed measure’s surfaces, shown in
g 2(e), are smooth, as in histogram matching, but also have

good object localisation, indicated by the tighter peaks.
Our nal experiment in gure 3 shows results from typical

object-tracking scenarios. For this we use the multi-feature
spatiogram-based mean-shift tracking framework described
in our previous work [7]. We compare the original measure to
our proposed measure for person tracking (top row) and head
tracking (bottom row) using thermal infrared and colour pixel
features. The original measure (shown in red) fails quickly
when the tracked object moves, due to its narrow similarity
surface peak. The mean-shift procedure generally fails when
an object moves faster than the peak width. The proposed
measure (shown in yellow) successfully tracks both objects.
Videos online at: http://www.eeng.dcu.ie/˜oconaire/icassp07

6. CONCLUSIONS

In this work, we have detailed the limitations of the original
spatiogram comparison measure and have proposed an im-
proved measure, derived from the Bhattacharyya coef cient.
Its advantages, both in more accurate object localisation and
in giving a smooth similarity surface, were demonstrated the-
oretically and on real video data. Future work will exam-
ine how to update object spatiogram models during tracking,
while minimising model drift.
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(a) (b) (c) (d) (e)

Fig. 2. (a) Target objects, (b) Search areas with best matches shown: Original measure (blue), Histogram matching (red),
Proposed measure (green). Similarity surfaces: (c) Original measure, (d) Histogram matching and (e) Proposed spatiogram
measure

Fig. 1. The effects on the similarity measures of adding
Gaussian noise to a target image (top right): Histogram sim-
ilarity (blue), original spatiogram similarity measure (green),
proposed measure (red). Added noise RMS shown on x-axis.
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