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ABSTRACT

Background modeling and subtraction is a fundamental task

in many computer vision and video processing applications.

We present a novel probabilistic background modeling and

subtraction method that exploits spatial and temporal depen-

dencies between pixels. By using an initial clustering of the

background scene, we model each pixel by a mixture of spa-

tiotemporal Gaussian distributions, where each distribution

represents locally a region in the neighborhood of the pixel.

By extracting the local properties around each pixel, the pro-

posed method obtains accurate models of dynamic backgrounds

that are highly effective in detecting foreground objects. Ex-

perimental results for indoor and outdoor surveillance videos

in comparison with other multimodal methods demonstrate

the performance advantages of the proposed method.

Index Terms— background subtraction, object detection,

probabilistic model, Bayesian formulation, video processing.

1. INTRODUCTION

Identification of foreground objects and background regions

in a video is one of the fundamental tasks in computer vision

and video processing, especially in applications like video

surveillance, traffic analysis and monitoring, video coding,

and tracking systems. The most widely used approach for

this task is background subtraction, where a model for the

semantically uninteresting stationary background regions is

built and maintained throughout the process. Once a back-

ground model is created, the moving objects (the foreground)

in the image sequence are extracted.

The most challenging part in background subtraction is

building an adaptive model for the background, as in most

scenes the background shows a spatiotemporally varying be-

havior that results from variations in illumination due to cloud

cover or blocking of the light source in indoor videos, as well

as from moving background objects such as tree leaves, rain,

and snow. An efficient background model must incorporate

the necessary invariance and adaptation to overcome these

problems.

The most popular approaches for background subtraction

are based on probabilistic models. In these methods, the prob-

ability distribution of the pixel values is estimated by a num-

ber of different techniques. A single Gaussian is used to

model the statistics of a pixel in [1], where the mean and

variance of the Gaussian is recursively updated over time.

To model multimodal distributions, [2] uses a mixture of K
Gaussians, where each Gaussian is classified as foreground

or background distribution depending on the frequency of oc-

currence. This has achieved great success because of its high

capability of handling multimodal backgrounds and adapting

to varying scene properties. In [3], the authors proposed a

nonparametric kernel density estimation (KDE) method. The

background pdf is estimated using a smoothed histogram of

N (typically 50-100) recent pixel intensities. Adaptation is

done simply by updating the histogram values with new pixel

intensities. KDE is more suitable for modeling a wide range

of pdfs and has been quite successful despite of its relatively

high computational load.

All of the techniques described so far model the back-

ground independently for each pixel. However, there is a

substantial correlation between neighboring pixels. Many of

the above-mentioned techniques have been augmented to take

advantage of this correlation, by either modifying the back-

ground model or by introducing a postprocessing step. How-

ever, there is a need for a comprehensive approach that takes

full advantage of the spatial information. Such an approach

was initially proposed in [4]. Here we extend that approach,

which used spatial MRF constraints and spatiotemporal adap-

tation of the region intensity functions, and investigate the ne-

cessity of spatial and temporal constraints, as well as their ef-

fect on computational complexity. What we have proposed

so far, is the spatiotemporal approach proposed by Hinds and

Pappas in [5]. Here we use a new computationally efficient

way to calculate the region intensity functions, and also in-

vestigate the necessity of spatial and temporal constraints. As

we will see below, we also introduce an additional region type

to model the foreground objects.

This paper proposes a new method for background mod-

eling that relies on segmentation to incorporate a better un-

derstanding of the background. Starting from a Bayesian for-

mulation, we model the pixel processes in the context of their

neighbors. The proposed algorithm provides an efficient back-

ground subtraction by preserving multimodularity both spa-
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tially and temporally.

This paper is organized as follows: Section 2 describes

the modeling of the video based on a Bayesian formulation.

The algorithm based on this model is also presented in this

section. In Section 3 we show the performance of our algo-

rithm in comparison with the existing methods. We provide

our conclusions in Section 4.

2. MODEL

A video can be considered as a three dimensional volume y
of arbitrary shaped objects in space-time. Each video frame

yt is a two dimensional slice in this volume taken at time t.
Spatial coordinates are indexed with s, so a pixel intensity

on an video frame yt is denoted as ys,t. A clustering of the

video sequence into spatiotemporal regions is denoted by x,

where xt is a segmentation of the frame yt, and xs,t denotes

the labeling of the pixel at (s, t) (xs,t ∈ {1, 2, ..,K}). The

parameter K is the number of clusters in the video. In this

work, we use K = 4 clusters. Generally, values 3 ≤ K ≤ 5
give similar results.

The probability of a clustering x can be calculated using

the maximum a posteriori (MAP) estimation approach. Given

the observed video sequence y, the a posteriori probability

density function p(x|y). can be expressed by Bayes’ theorem

as follows:

p(x|y) ∝ p(y|x) p(x), (1)

where p(x) is the a priori density of the region distribution

and p(y | x) is the density of the observed video sequence

given the distribution of the regions. We model the clustering

process x by a three dimensional Gibbs random field (GRF),

which satisfies the Markovian property [6], i.e., the probabil-

ity density of the a pixel at (s, t) can be completely character-

ized by its neighborhood Ns,t, that is,

p(xs,t|xq,r, all (q, r) �= (s, t)) = p(xs,t|xq,r, (q, r) ∈ Ns,t).
(2)

By the Hammersley-Clifford theorem [6], p(x) has the form

of the Gibbs density:

p(x) =
1
Z

exp

(∑
C

VC(x)

)
, (3)

where Z is a normalizing constant, VC(x) are the clique po-

tentials, and the summation is over all cliques C. The clique

potentials VC depend only on the pixels that belong to clique

C. A clique C is a subset of the neighborhood system defined

on the Cartesian grid, where every pair of distinct pixels in C
are neighbors.

We assume that the only nonzero potentials the ones that

correspond to two-point cliques. The cliques are either spatial

or temporal, so that the potential functions can be expressed

as

VS(x) =

{
−βS , if xs,t = xq,t and (s, t), (q, t) ∈ S

+βS if xs,t �= xq,t and (s, t), (q, t) ∈ S
(4)

VT (x) =

{
−βT , if xs,t = xs,r and (s, t), (s, r) ∈ T

+βT if xs,t �= xs,r and (s, t), (s, r) ∈ T
(5)

where Z is a normalizing constant, VC(x) are the clique po-

tentials, and the summation is over all cliques C. The clique

potentials VC depend only on the pixels that belong to clique

C. The parameters βS and βT are positive so two neighbor-

ing pixels are more likely to belong to the same cluster than

different clusters. Note that using two different parameters

for temporal and spatial clique potentials, one can control the

interaction between pixels within a single frame as well as

across frames.

We model the objects as having uniform or slowly varying

intensity in a small neighborhood so that the only discontinu-

ities occur at the volume boundaries, that is, a cluster can be

accurately modeled locally by a unimodal distribution, e.g. by

a Gaussian. Thus, given a clustering x, the conditional den-

sity of a pixel intensity in cluster i in a neighborhood of (s, t)
can be modeled as

p̂(y(s,t)|x = i) = η(ys,t; μi,s,t, Σi,s,t) (6)

Summing over all possible clusters i in the neighborhoodN(s,t)

of (s, t) we achieve a spatiotemporal mixture of Gaussians

model:

P (ys,t|xp,q ∈ N(s,t)) =
1
K

K∑
i=1

η(ys,t; μi,s,t, Σi,s,t) (7)

It is interesting to note that the model presented in [2] is a spe-

cial case of this formulation where the neighborhood is taken

as a single pixel, or the clique potentials βT and βS are set

to zero (no spatial or temporal constraints), which is consis-

tent with their approximation that all pixels are independent.

However, this approximation is obviously very weak, and our

Bayesian formulation generalizes to the concept of dependent

pixel processes following the Markovian property.

The combined conditional probability in Eq. 1 can now be

written as:

p(xs,t|ys,t) ∝
[

1
K

K∑
i=1

η(ys,t; μi,s,t, Σi,s,t)

]
exp

[∑
C

VC(xs,t)

]

(8)

This formulation can be used to detect the foreground regions

as follows: The first frame of the video is clustered using

ACA [7] with K clusters, which follows the above formu-

lation and takes approximately 1-2 seconds, depending on

frame size. The models for pixel processes are generated us-

ing these K background clusters, and no foreground model
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is generated. After this initialization phase, each consecutive

frame can be clustered into K + 1 regions where the pixels in

the cluster K + 1 belong to the foreground regions. Concep-

tually, a foreground cluster is not different than the K back-

ground clusters, and it is modeled locally as a single Gaussian

like the other clusters. It is important to note that the single

Gaussian model is very accurate in a very small neighborhood

(we use a square neighborhood of 5 by 5 pixels). Using this

local model even foreground objects consisting of very differ-

ent textures can be detected.

As performance is a common important issue in back-

ground subtraction algorithms, the solution of Eq. (8) using

common methods (simulated annealing, iterated conditional

modes, etc.) (see, for example, [5]) is impractical. We pro-

pose two efficient approximate solutions: In our first solution,

spatial and temporal constraints are eliminated (βT = βS =
0). In the consecutive frames, the foreground pixels are deter-

mined as the pixels having a low probability of belonging to

the local models, specified solely by the spatiotemporal mix-

ture of Gaussians, so that the probability density in Eq. (8)

reduces to Eq. (7).

Alternatively, if the continuity is desired, the dependency

constraints can be included and the probability can be calcu-

lated using both terms in Eq. (8). A causal ICM [8] approach

can be utilized in the case of temporal continuity only, while

for spatially continuous cases the algorithm needs a number

of iterations. Considering the importance of computational

constraints in background subtraction, we limit the number

of iterations to 2 for spatial smoothing, so a real-time per-

formance is achievable. Generally the algorithm accuracy

is affected with the spatial smoothness term, and the result-

ing clustering is much smoother. However, for applications

where the performance is critical, this regularization term can

be dropped, which results in a one-pass algorithm.

To track the changes in in dynamic scenes, this temporal

model has to be adaptive. In our model, adaptation in each im-

age plane yt can be done by reestimating the distribution pa-

rameters using the segmentation data xt. However, errors in

the segmentation can lead to estimation problems and there-

fore to propagation of segmentation errors. Prefiltered data

could be beneficial to decrease the effect of outliers. Since

more weight has to be given to the present data than past for

fast adaptation, we use an autoregressive model to update the

distribution parameters (μi,s,t, σi,s,t), that is,

μi
s,t = (1− α)μi,s,t−1 + αμ̂i,s,t (9)

Σi,s,t = (1−α)Σi,s,t−1 +α(μ̂i,s,t−μi,s,t)T (μ̂i,s,t−μi,s,t),
(10)

where α is the learning rate with 0 ≤ α ≤ 1, and μ̂i,s,t is

the local intensity mean estimate calculated for region i using

xt within the neighborhood defined by a square window of a

Control variables: K , α , W , βS , βT

Initialization: Obtain initial segmentation x using ACA

Calculate local statistics μi,s,t, Σi,s,t

Initialize K Gaussian pdf’s Gi using μi,s,t, Σi,s,t

while new data yt do
//Obtain new pixel label i

i = argmaxi
|ys,t−μi,s,t|

σi,s,t
exp [

∑
C VC(xs,t)]

//Update
Calculate local statistics μ̂i,s,t using xt

Apply Eqs. (9)-(10) to Gi

//(Optional) Spatial Smoothing
Apply ICM to xt until convergence or by a fixed number

of iterations

end while

Fig. 1. Proposed Algorithm

side length W . This updating can be interpreted as a autore-

gressive filter with the current mean estimates as the input.

The learning parameter α determines the rate of adaptation to

the new pixel intensities. As opposed to [2], the sensitivity of

the parameter α is very low for two reasons: The new data

is already clustered among the Gaussians, and the smoothed

μ̂i,s,t is used instead of the raw pixel intensities ys,t. Thus,

this parameter requires very little, if not, adjusting to specific

videos where [2] requires careful tuning.

The overall model and the algorithm are summarized in

Fig. 1.

3. EXPERIMENTAL RESULTS

In this section we show the performance of the proposed back-

ground subtraction algorithm and compare it with KDE [3]

and MoG [2] methods.

A frame of an outdoor surveillance sequence is shown in

Fig. 2(a), where the static camera is placed at a long distance

so the objects have small appearances (as small as 5 pixels

tall). This is a significant challenge for the proposed approach

since the segmentation has to achieve high accuracy. The mo-

tion of trees and changing shadows present similar challenges.

The pixel labels in frame number 260 are shown in Fig. 2(b)

and the detected foreground objects are shown in Fig. 2(c).

The advantage of the proposed algorithm is that it achieves

a high accuracy at foreground detection while maintaining a

low noise level, which is generally hard to achieve for con-

ventional background subtraction algorithms that utilize in-

dependent pixel processes.

Second, a frame of a typical low-quality, compressed surveil-

lance video is shown in Fig 3(a), where the resolution is low,

blocking and artificial lighting artifacts are present. The result

of MoG [2] is shown in Fig. 3(c), where maximum number of

Gaussians per pixel set to 4. The result of KDE [3] is shown in

Fig. 3(b). The KDE algorithm is run by setting the number of
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(a) (b)

(c)

Fig. 2. Detection results on an outdoor surveillance video. (a)

Original Image. (b) Pixel labels (c) Detected foreground.

history pixels to 100. The high noise level in this result is due

to the short initialization time, which is a major drawback of

KDE. In contrast, the proposed algorithm achives much bet-

ter results with a very short initialization time; as shown in

Fig. 3(d), it clearly outperforms both of the methods. The

most significant property to note is the very low noise level

which is mainly due to temporal constraints.

Our method also compares favorably in terms of compu-

tational complexity and memory requirements. KDE method

requires saving 50-100 frames in the memory and MoG method

holds 3-5 distributions/pixel in the memory and both methods

require a substantial amount of computation. Our approach

requires storing K + 1 distributions per pixel and the clus-

tering information in the memory, and the processing speed

achieves real-time performance 10-30 fps (using temporal con-

straints only), depending on the window size used to calculate

the local statistics). When spatial constraints are included for

smoother results, a performance of 5-10 fps can be achieved.

The initialization phase requires only 1-2 seconds, which is

acceptable in most applications.

4. CONCLUSIONS

In this paper, we presented a novel background subtraction

algorithm based on a Bayesian formulation that generalizes

conventional algorithms. The pixel processes are modeled

as a Gibbs-Markov random field which helps to exploit spa-

tiotemporal dependencies between pixels in the video to help

reduce the detection noise while maintaining the desired ac-

curacy. The labeling of pixels capture the general appearance

of the scene and greatly enhance the final result. The model is

updated by a simple yet efficient manner so that the algorithm

captures the changes in the observed scene. Although the

model is more complicated than the previous parametric mix-

ture of Gaussians methods, the algorithm reaches real time

(a) (b)

(c) (d)

Fig. 3. Detection results on an indoor surveillance video. (a)

Original Image. Detection results using (b) Nonparametric

(KDE) model (c) Mixture of Gaussians model (d) Proposed

approach.

performance. Experimental results show that our algorithm

gives superior performance compared to existing methods.
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