
HIGHLY EFFICIENT VQ-BASED NORMAL MAP COMPRESSION
USING QUALITY ESTIMATION MODEL

T. Yamasaki and K. Aizawa

Dept. of Information and Communication Engineering,

The University of Tokyo

ABSTRACT

Normal maps play an important role in computer 3D graph-
ics to express pseudo roughness of the surface with a small
amount of polygon data. In this paper, a highly efficient
normal map compression algorithm is proposed based on an
estimation model to predict the quality of the images ren-
dered with the compressed normal maps. The optimal en-
coding is achieved by minimizing the predicted mean square
error (MSE) employing vector quantization (VQ). In addi-
tion, encoding and decoding time is fast enough for practical
usage. Experimental results demonstrate that the algorithm
proposed in this paper yields better compression perform-
ance than the other algorithms in the literatures.

Index Terms— Normal map, normal mapping, com-
puter graphics, compression, vector quantization

1. INTRODUCTION

Normal mapping, which is an extension of bump mapping
[1], is a key technology for realistic 3D computer graphics
because it can express pseudoroughness of the 3D objects’
surface only with a small amount of polygon. Normal map-
ping has attractive advantages in rendering complexity and
storage efficiency as compared to expressing the elaborated
bumpy texture of 3D objects using a lot of polygons.

With normal mapping being used for every surface of
the scenes, the data size of normal maps is getting problem-
atic. Although normal maps can be represented as full color
bitmap images, their spatial correlation among neighboring
pixels is quite low [2], making it difficult to apply conven-
tional 2D natural image compression algorithms such as
JPEG and JPEG2000. Therefore, some techniques for nor-
mal map compression have been developed in recent years
[2]-[6]. In [3], general-purpose texture compression algo-
rithms using VQ was applied. ATI developed a dedicated
algorithm called 3Dc [4] and implemented it on their graphic
hardware. Later on, the 3Dc algorithm was improved by 3dB
on average by optimizing the bit allocation depending on the
data distribution [6]. In addition, a fast and efficient com-
pression algorithm was developed in [2] employing VQ by

taking the advantage of the limited spatial distribution of the
normal vectors.

However, all the algorithms so far have tried to reduce
the MSE between the original normal maps and the com-
pressed ones. Strictly speaking, the compression perform-
ance should be evaluated by the images rendered with the
compressed normal maps, not by the quality of the com-
pressed normal maps themselves. For this purpose, an equa-
tion to express the relationship between the compressed
normal maps and the rendered images is required. Otherwise,
a strategy for the MSE optimization cannot be defined.
Therefore, we have presented a model to estimate the quality
of the images rendered with compressed normal maps [7].
The model made it possible to predict the quality of the im-
ages without actually rendering the images. In addition, the
computational cost is much lower than calculating the MSE
using actually rendered images.

The purpose of this paper is to develop an efficient nor-
mal compression algorithm based on the quality estimation
model [7]. Namely, normal maps are encoded considering
the resultant images rendered with compressed normal maps.
In our approach, a VQ-based compression algorithm is de-
veloped to minimize the predicted MSE. The encoding com-
plexity has been reduced considering the distribution of
normal vectors in normal maps. Experimental results dem-
onstrate that the compression efficiency of our algorithm is
as good or better than that of our previous work [2], which
has given better performance than the other algorithms in
most cases so far. In addition, both encoding and decoding
time is fast enough for practical usage.

2. NORMAL MAP

Normal maps are the maps of three dimensional vectors
which represent directions of normal vectors of 3D object
surfaces. Therefore, normal maps can be simply expressed
as RGB bitmaps, in which the [-1, 1] range of normal vec-
tors is mapped to integer values of [0, 255] based on (1)
(therefore, x, y, and z values are discrete).

() ()2, , , , 1
255

x y z R G B= − (1)

where (x, y, z) and (R, G, B) represent the element values of
each pixel in a normal map and their corresponding full

I 10411424407281/07/$20.00 ©2007 IEEE ICASSP 2007

color pixel values, respectively. Examples of normal maps
are shown in Fig. 1.

The length of normal vectors is normalized to one in or-
der to simplify the weight factor calculation of color and
luminance into an inner product between the normal vector
and the luminance vector (see (4)):

2 2 2 1x y z+ + = (2)
Here, the z component is always equal to or greater than
zero because normal vectors point the direction of the outer
side of the surface:

1 1, 1 1, 0 1x y z− ≤ ≤ + − ≤ ≤ + ≤ ≤ + (3)

3. QUALITY ESTIMATION MODEL

In the quality estimation model [7], a simple but essential
shading model is assumed. That is, there is no ambient light,
light emission, attenuation/spotlight effects, nor specular. In
addition, it is assumed that there is a white diffuse point light
source in the infinite distance in the scene. Normal maps are
mapped to a square board along with color texture data. The
viewpoint is set at the right top of the board. Even when the
normal maps are rendered on an object with complicated
shape, the local area of the surface can be approximated as a
square plane. Under this condition, the shading equation for
each pixel is described as

()maxI L N D= ⋅ (4)
where I, L, N=(x, y, z), and D represent the resultant pixel
value in the rendered image, the luminance vector, the nor-
mal vector, and the color texture, respectively. For simplic-
ity, the max function in (4) is neglected:

()I L N D= ⋅ (5)
In the same manner, the resultant pixel value (I’) using a
compressed normal vector (N’=(x’, y’, z’)) is described as

()' 'I L N D= ⋅ (6)
Here, we define the MSE between I and I’ as

2 21 '
3

L N L N D
M

i i i i i
i

MSE
M

= ⋅ − ⋅ (7)

where M is the number of pixels in the rendered image. Then,
L and N-N’ are defined as follows:

()sin cos ,sin sin ,cosL θ φ θ φ θ= (8)

()0 / 2,0 2θ π φ π≤ ≤ ≤ <

() ()' ', ', ' , ,N N x x y y z z x y z− = − − − = Δ Δ Δ (9)
The averaged MSE for all possible light source location is
calculated analytically as in (10).

()

()

() () ()()

2 2

2 2 22
0 0

2 2 2 2

1 1 '
3 2

1 ' sin
6
1

9

L N L N D

L N L N D

D

M

i i i i iS
i

M

i i i i i
i

M

i i i i
i

MSE dS
M

d d
M

x y z
M

π π

π

φ θ θ
π

= ⋅ − ⋅

= ⋅ − ⋅

= Δ + Δ + Δ

 (10)

As a result, the predicted peak signal to noise ratio
(PSNRmodel) of the rendered image is described as in (11).

() () ()() 22 2 2

2

model 10

2

10

25510log

255 910log
D

M

i i i
i

ix y z

PSNR
MSE

M

Δ + Δ + Δ

=

⋅=
 (11)

The intuitive understanding of this equation is that the error
in the compressed normal maps becomes invisible when the
color texture is dark. On the other hand, when the color tex-
ture is bright, the error is amplified and degrades the resul-
tant image. Please refer to [7] for the validity of this model.

4. COMPRESSION ALGORITHM

4.1. MSE minimization
Since the MSE of the image rendered with the compressed
normal maps is predicted as in (10), our compression strat-
egy is to minimize it using VQ. In our approach, a normal
vector in each pixel of normal map is utilized as a vector
because (10) is a function of (x, y, z). Although the vector
dimension is only three, it will be demonstrated that the
compression efficiency is rather high.

The code vectors (representative vectors in the clusters)
should satisfy the following condition:

() () ()()2 2 2

, ,

2 2 2

2
min

1

D
r r r

i r i r i r
x y z

i S

r r r

iH x x y y z z

subject to x y z
∈

= − + − + −

+ + =
(12)

where S, (xi, yi, zi), and (xr, yr, zr) represent the set of vectors
in a certain cluster, the i-th training vector in a set S, and the
code vector, respectively. By the Lagrange multipliers, the
code vector becomes

() ()
2 2 2

, ,
, ,r r r

X Y Z
x y z

X Y Z
=

+ +
 (13)

where

() 2 2 2, , , ,D D Di i i i i i
i S i S i S

X Y Z x y z
∈ ∈ ∈

= (14)

 (a) (b)
Fig. 1. Examples of normal maps: (a) wall texture; (b) tile
texture. The size is 512×512.

I 1042

4.2. Encoding time reduction
In VQ, codebook training is computationally very expensive
because a large number of repetitions of distance calculation
among vectors are required. Therefore, the training time is
decreased by reducing the number of distance calculation as
well as the cost for distance calculation.

Firstly, the spatial distribution of normal vectors is quite
limited and thus the signal space of normal maps is very
small. In addition, the dimension of the vectors is only three.
Therefore, a lot of identical vectors exist in training vectors.
Fig. 2 shows the histograms of the normal vector distribution.
The frequency is normalized by the number of training vec-
tors. In addition, the z components are omitted since it can
be restored using (2) and (3). It is demonstrated that the
number of the unique vectors are quite small. For instance,
the numbers of unique training vectors are 5,776 and 15,738
for Figs. 1(a) and 1(b), respectively, which is much smaller
than the total number of the training vectors: 262,144
(512×512). Therefore, in our algorithm, the unique vectors
are extracted in advance and the nearest-neighbor search is
conducted only for them. At the same time, Σ||D||2 is calcu-
lated for each unique vector. This value is used for the dis-
tortion calculation and the code vector generation.

Since the length of normal vectors is normalized to one
as discussed in Section 2, searching the nearest neighbor
(NN) vector is equal to searching the vector that gives the
maximum inner product. The cost for the inner product is
smaller than that for the square error calculation, thus further
reducing computational cost. The detailed algorithm is
shown as a pseudo code in Table 1.

5. EXPERIMENTAL RESULTS

In the experiments, a personal computer with Pentium 4
(3.2GHz) and 2GB memory was utilized. The algorithm was
implemented using gcc 3.4.4. The experiments were carried
out using about 300 normal maps with the size of 512×512
that were contained in “Bump Texture Library [8].” In the
experiments, the light source was changed according to the
following conditions: θ=(0, 15, 30, 45, 60, 75), φ=(0, 45, 90,
135, 180, 225, 270, 315). Then, the mean PSNR considering
all the light positions was calculated. The other rendering
conditions were the same as those in Section 3. The per-
formance was compared with that in [2], which has yielded
the best performance in most normal maps among the previ-
ous works [2]-[4][6].

The mean encoding time as a function of codebook size
is shown in Fig. 3. Although a certain amount of overhead
time (~0.1 s) is consumed for calculating (14) as compared
to [2], the encoding time is less than 0.5 s. Since decoding
does not require any additional processing, the decoding
time was about 50 ms for any codebook size, which is the
same as that in [2]. This is an important advantage because
decoding is conducted by the user device where computa-
tional power is typically not as great.

-1

0

1 -1

0

1
 0

 0.02

 0.01

x
y

N
or

m
al

iz
ed

 F
re

qu
en

cy

(a)

-1

0

1 -1

0

1
 0

 0.02

 0.01

x
y

N
or

m
al

iz
ed

 F
re

qu
en

cy

0.720

(b)

Fig. 2. Histograms of (x, y, z) vectors in normal maps: (a)
wall texture; (b) tile texture.

Table 1. Quasi code for our normal map compression.

1. generate a training vector set from a normal map
2. extract the unique training vectors
3. calculate Σ||D||2 for each unique vector
4. generate a seed code vector using (13) and (14)
5. while(codebook size <= desired}){
6. split the code vectors
7. while (distortion is not minimum){
8. for (i=0; i<# of unique training vectors; i++){
9. search for the NN code vector using the inner product
10. distortion=distortion + (Σ||D||2 of the i-th unique vector)

*distortion(the i-th unique vector, its NN code vector)
11. }
12. regenerate codebook using (13) and (14)
13. }
14. }
15. encode list of unique vectors and code indices

Codebook size
1,000100101

0

0.1

0.2

0.3

0.4

0.5

10,000

En
co

di
ng

 ti
m

e
(s

)

This Work

[2]

Fig. 3. Encoding time as a function of codebook size.

I 1043

In Fig. 4, the actual PSNR (not PSNRmodel) of the ren-
dered images using the compressed normal maps in Fig. 1 is
illustrated. It is shown that the algorithm proposed in this
paper yields as good or better compression performance than
[2]. For instance, PSNR is enhanced by 0.8dB in Fig. 4(a)
and 4.0 dB in Fig. 4(b) at the high PSNR region. It was ob-
served that the PSNR is enhanced considerably in higher
PSNR region: 35dB and above. Since the normal mapping
was developed aiming at high-quality image rendering, the
quality enhancement in such a high PSNR region is impor-
tant. It is also shown that our algorithm is much better than
other approaches [4][5].

Fig. 5 shows how much the PSNR is improved on aver-
age for all the normal maps as compared to that in [2]. The
PSNR gain is demonstrated as a function of bit rates. It can
be seen that the PSNR is increased by 0~1.1 dB.

6. CONCLUSIONS

In this paper, an efficient normal compression algorithm was
presented using the quality estimation model. In our ap-
proach, the encoding was done considering the quality of the
images rendered with compressed normal maps. As a result,
the compression performance was enhanced by 0~1.1 dB as
compared to our previous work with a small computational
time overhead of 0.1 s.

ACKNOWLEDGEMENTS
This work is supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan under the
“Development of fundamental software technologies for
digital archives” project.

11. REFERENCES
[1] J.F. Blinn, “Simulation of wrinkled surfaces, Proc. the 5th

annual conference on Computer graphics and interactive
techniques,” Vol. 12, No. 3, pp.286-292, 1978.

[2] T. Yamasaki and K. Aizawa, “Fast and efficient normal map
compression based on vector quantization,” Proc.
ICASSP2006, pp. II-9-II-12, 2006.

[3] S. Green, “Bump Map Compression Whitepaper,”
http://download.nvidia.com/developer/Papers/2004/Bump_M
ap_Compression/Bump_Map_Compression.pdf, Oct. 2004.

[4] “ATI RADEON X800 3Dc white paper,”
www.ati.com/products/radeonx800/3DcWhitePaper.pdf.

[5] T. Yamasaki, K. Hayase, and K. Aizawa, “Mathematical error
analysis of normal map compression based on unity condi-
tion,” Proc. ICIP2005, pp. II-253-II-257, 2005.

[6] J. Munkberg, T.A. Möller, and J. Ström, “High-quality nor-
mal map compression”, Proc. Graphics Hardware Workshop,
pp. 95-101, 2006.

[7] T. Yamasaki, K. Hayase, and K. Aizawa, “Mathematical
PSNR prediction model between compressed normal maps
and rendered 3D images,” Proc. 2005 Pacific-Rim Conference
on Multimedia (PCM 2005), LNCS 3768, pp. 584-594, 2005.

[8] “Bump texture library,” Computer Graphics Systems Devel-
opment Corporation, http://cgsd.com/.

20 4

10

6 8 10 12 14 16

20

30

40

50

60

Bit Rate of Normal Maps (bpp)

PS
N

R
 o

f R
en

de
re

d
Im

ag
es

 (d
B

)

3Dc

Optimized JPEG

Model-Based VQ
(This Work)

 VQ w/o Model [2]

(a)

20 4

10

6 8 10 12 14 16

20

30

40

50

60

Bit Rate of Normal Maps (bpp)

PS
N

R
 o

f R
en

de
re

d
Im

ag
es

 (d
B

)

3Dc

Optimized JPEG

Model-Based VQ (This Work)
VQ w/o Model [2]

(b)

Fig. 4. PSNR of the images rendered with compressed nor-
mal maps: (a) wall texture; (b) tile texture.

PS
N

R
 G

ai
n

C
om

pa
re

d
to

 [2
]

(d
B

)

Bit Rate of Normal Maps (bpp)
0

0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10

(b)
Fig. 5. Mean PSNR gain for about 300 normal maps as
compared to [2] as a function of bit rate.

I 1044

