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ABSTRACT

Recently, Narozny et al [1] proposed a new viewpoint in vari-

able high-rate transform coding. They showed that the prob-

lem of finding the optimal 1-D linear block transform for a

coding system employing entropy-constrained uniform quan-

tization may be viewed as a modified independent compo-

nent analysis (ICA) problem. By adopting this new view-

point, two new ICA-based algorithms, called GCGsup and

ICAorth, were then derived for computing respectively the

optimal linear transform and the optimal orthogonal trans-

form. In this paper, we show that the transforms returned by

GCGsup and ICAorth can achieve better visual image qual-

ity (better preservation of lines and contours) than the KLT

and 2-D Discrete Cosine Transform (DCT) when applied to

the compression of well-known grayscale images.

Index Terms— Transform coding, independent compo-

nent analysis, DCT, KLT, image coding

1. INTRODUCTION

Classically, the best-known results on optimal 1D linear block

transforms for transform coding [2] apply only for Gaussian

sources. High resolution theory shows that the Karhunen-

Loève transform (KLT) is optimal for Gaussian sources [3],

and the asymptotic low resolution analysis does likewise [4].

Recently, Narozny et al [1] proposed a new viewpoint in

variable high-rate transform coding. They showed that the

problem of finding the optimal 1-D linear block transform

for a high-rate transform coding system employing entropy-

constrained uniform quantization may be viewed as a mod-

ified independent component analysis (ICA) problem. This

result applies without the presumption of Gaussianity or or-

thogonality. By adopting this new viewpoint, two new mod-

ified ICA algorithms, called GCGsup and ICAorth, were

then derived for computing respectively the optimal 1-D lin-

ear transform and the optimal 1-D orthogonal transform. Un-

like other more intuitive attempts of applying ICA to trans-

form coding [5, 6], the work of Narozny et al [1], which re-

lies on a theoretical analysis, revealed one underlying link be-

tween ICA and transform coding.

This paper aims at assessing the performances of algo-

rithms GCGsup and ICAorth when applied to the compres-

sion of well-known grayscale images (Lenna, Mandrill, Pep-
pers and Boat) each of size 512×512 pixels and coded using 8

bits per pixel (bpp). In order to present a self-contained paper,

we begin with a brief review of the main results presented in

[1]. The modified ICA bases learned from the set of test im-

ages are presented in section 3. In section 4, we show that the

new transforms can achieve better visual image quality (bet-

ter preservation of lines and contours) than the 2-D DCT in

medium-to-low bit rate compression. Perspectives of future

evolution are presented in section 5.

2. LINK BETWEEN ICA AND TRANSFORM
CODING

The transform coding scheme we are interested in applies a

linear invertible transform T to an input vector X = (X1, . . . ,
XN )T (where the exponent T denotes transposition) in order

to obtain a vector Y = (Y1, . . . , YN )T better suited to cod-

ing than X. To construct a finite code, each coefficient Yi is

first approximated by a quantized variable ̂Yi. We concen-

trate on uniform scalar quantizers. The quantized coefficients

are then entropy coded. The coded representation is stored or

communicated over an error-corrected (lossless) channel. The

receiver (decoder) provides an approximation ̂X = ( ̂X1, . . . ,
̂XN )T of the original signal X by applying a linear trans-

form U to the quantized signal ̂Y. In this paper, we assume

U = T−1. The end-to-end distorsion is measured by the

Mean Square Error (MSE): D = 1/N
∑N

i=1 E[(Xi − ̂Xi)2],
where E denotes the expected value.

In [1], Narozny et al showed that the optimal linear trans-

form for a high-rate transform coding system using entropy-

constrained uniform quantization is the transform T that max-

imizes the generalized coding gain

G� =

(

∏N
i=1 c�

i

)1/N (

∏N
i=1 σ�2

i

)1/N

(

∏N
i=1 wici

)1/N (

∏N
i=1 σ2

i

)1/N
. (1)

where the weight wi is equal to the square euclidean norm of
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the ith column of T−1, σ�2
i (resp. σ2

i ) is the variance of Xi

(resp. Yi), and c�
i (resp. ci) is the constant associated with the

variable ˜Xi = (Xi−E[Xi])/σ�
i (resp. ˜Yi = (Yi−E[Yi])/σi)

according to the relation c�
i = 22h(fXi)

12 (resp. ci = 22h( eYi)

12 ),

where h( ˜Xi) (resp. h(˜Yi)) is the differential entropy of ˜Xi

(resp. ˜Yi). The generalized coding gain is the factor by which

the distorsion is reduced because of the linear transform T,

assuming high rate and optimal bit allocation.

In [1], the authors also showed that maximizing the gen-

eralized coding gain is equivalent to minimizing the criterion:

C(T) = I(Y1; . . . ; YN ) +
1
2

log2

det Diag[T−T T−1]
det T−T T−1

, (2)

where I(Y1; . . . ; YN ) is the mutual information between the

random variables Y1, . . . , YN , and for any square matrix C,

Diag(C) denotes the diagonal matrix having the same main

diagonal as C. The criterion (2) may be decomposed into the

sum of two terms: C(T) = CICA(T) + CO(T). The first

term CICA(T) = I(Y1; . . . ; YN ) corresponds to the mutual

information, which is a classical criterion in ICA. The second

term CO(T) measures a pseudo-distance to orthogonality of

the transform T; it is non negative, and zero if and only if

the column vectors of T−1 are orthogonal. Two algorithms

for the minimization of the criterion (2) were proposed in [1].

The first one, called GCGsup for Generalized Coding Gain

Supremum, consists of a modified version of the mutual infor-

mation based ICA algorithm by Pham [7] called ICAinf. In

the second new algorithm, called ICAorth for Independent

Component Analysis Orthogonal, the algorithm ICAinfwas

modified in order to compute the optimal orthogonal matrix

that minimizes C(T).

3. BASES ESTIMATION

3.1. Learning schemes

The modified ICA bases (i.e., the columns of T) were esti-

mated according to two learning schemes. The first one yields

8 different bases (2 per image): for each test image, the al-

gorithms GCGsup and ICAorth were applied to a training

set consisting of 4 096 non overlapping image blocks each

of size 8 × 8 pixels extracted from the test image. More-

over, the KLT is estimated on the same training set. The first

column of Fig. 1 displays the estimated modified ICA bases

as well as the practically achieved KLT bases obtained from

the test image Peppers. As for the second scheme, it yields

only 2 different bases. The modified ICA bases were learned

from one training set consisting of 12 288 non overlapping

image blocks each of size 8 × 8 pixels extracted from three

test images (Lenna, Peppers and Boat), again the KLT basis

was learned on the same training set. The second row of Fig. 1

displays the estimated modified ICA bases (denoted T�
orth and

T�
opt) as well as the KLT basis (denoted KLT�).

(a) KLT (b) KLT�

(c) Torth (d) T�
orth

(e) Topt (f) T�
opt

Fig. 1. KLT, Torth and Topt basis vectors obtained from Pep-
pers (on first column) and KLT�, T�

orth and T�
opt basis vectors

obtained from the image training set (on second column).

3.2. Bases properties

Examining Fig. 1 closely reveals the features found with ICA

modified algorithms are much more localized in space than

the checkerboardlike basis vectors obtained with the KLT.

Notice also the more pronounced edge-like nature of the mod-

ified ICA bases, regardless of the learning scheme employed.

The computation of CO(T), i.e., , the pseudo-distance to

orthogonality, reveals that the bases estimated with GCGsup
are quasi-orthogonal as can be seen in Tab. 1.

Lenna Mandrill Peppers Boat
Topt 0.009 0.008 0.016 0.012

T�
opt 0.006 0.006 0.006 0.006

Table 1. Pseudo-distance to orthogonality (in bpp) of Topt

and T�
opt for each test image.
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Tab. 2 shows estimations of the generalized coding gain

for each tested transform and each test image. The average

generalized coding gain of each transform computed over the

set of test images is also given. The estimation method used

is the same as that described in [1]. Looking at the average

values of the generalized coding gain reveals that, whatever

the learning scheme, the modified ICA transforms perform

best followed respectively by the 2-D DCT and the KLT. The

coding gain of any of the modified ICA transforms relative

to the 2-D DCT is about 0.33 dB (resp. 0.12 dB) when the

first (resp. second) learning scheme is used suggesting that a

transform-based image coder could benefit from using any of

the modified ICA transforms.

Lenna Mandrill Peppers Boat Average

KLT 18.13 6.99 17.23 15.35 14.42

Torth 18.58 7.42 17.89 15.96 14.96

Topt 18.60 7.49 17.84 15.94 14.96

KLT� 17.76 6.98 17.08 14.79 14.15

T�
orth 18.34 7.27 17.63 15.74 14.74

T�
opt 18.31 7.28 17.70 15.72 14.75

2-D DCT 18.25 7.17 17.50 15.61 14,63

Table 2. Generalized coding gain (in dB) of the KLT, Torth,

Topt, KLT�, T�
orth, T�

opt, and 2-D DCT for each test image.

Last column yields the average generalized coding gain of

each transform computed over the set of test images.

4. MEDIUM-TO-LOW BIT RATES COMPRESSION

4.1. Context

The image coder used in our experiment is a transform coder

originally developed by Davis1. It has been designed for ex-

perimentation and is not intended to outperform current state-

of-the-art image coders. It is very modular and allows for

simple replacements of individual components (quantizer, en-

tropy coder, transform). It was modified so that it ressembles

a JPEG-like coder. The bases obtained using the first learning

scheme are transmitted with the image since they are data-

dependent bases. As for the bases estimated using the sec-

ond learning scheme, they are not transmitted with the image.

Quantization steps are chosen to minimize the end-to-end dis-

torsion subject to bit rate constraint. The bit allocation pro-

cedure is based on integer programming algorithms described

in [8] which provide optimal or near-optimal allocations for

the scalar uniform quantizers included here. Entropy coding

of the quantizer output is carried out by an adaptive arithmetic

coder.

4.2. Results

We now compare the compression performances of the fol-

lowing transforms: KLT, Topt, Torth, KLT�, T�
opt, T�

orth and

1http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html

2-D DCT. The results for Mandrill and Boat are displayed

in Fig. 2, in which we present the peak signal to noise ratio

(PSNR) as a function of bit-rate. Whatever the image, the

plots have these common characteristics.

(a) Mandrill

(b) Boat

Fig. 2. PSNR vs bit-rate for the images Mandrill and Boat.

1) The transform codes based on KLT�, T�
opt, T�

orth and

the 2-D DCT perform better than those based on the KLT,

Topt and Torth, regardless of the bit-rate. The poor coding

performances of the KLT, Topt and Torth are mainly due to

the coding penalty resulting from coding the basis vectors (11
bits were allocated on average to each matrix coefficient re-

sulting in a coding precision of 10−3).

2) We observed that the high-resolution hypothesis is ver-

ified for bit-rates greater than about 1.6 bpp (in this case, the

slope of the curve is about 6 dB per bits).

3) No meaningful performance difference can be observed

between the 2-D DCT and the class-adapted transform codes

based on T�
opt and T�

orth. Thus, our approach has made it

possible to learn two bases which are competitive with the

well-known 2-D DCT basis according to the standard PSNR

measure.
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(a) 2-D DCT (0.495 bpp; 32.88 dB) (b) T�
orth (0.495 bpp; 32.61 dB)

(c) 2-D DCT (0.496 bpp; 24.48 dB) (d) T�
orth (0.496 bpp; 24.51 dB)

Fig. 3. Images Boat and Mandrill coded at about 0.5 bpp.

Black arrows point towards details which are not present or

blurred on the corresponding image coded with the 2-D DCT.

Visual inspection of the image quality was also carried

out. Fig. 3(d) and 3(b) show respectively the images Man-
drill and Boat coded with T�

orth. Black arrows point towards

details which are not present or blurred on the correspond-

ing images coded with the 2-D DCT (best seen enlarged on

a computer screen). These details represent lines (e.g., some

ropes in the case of the image Boat) which are well preserved

with T�
orth. These results suggest that the class-adapted mod-

ified ICA bases are better suited to coding fine details such as

lines and edges compared to the 2-D DCT. This is not quite

surprising given the more pronounced edge-like nature of the

the modified ICA bases (see Fig. 1).

5. CONCLUSION

Recently, two new ICA-based algorithms, called GCGsup and

ICAorth, were proposed to compute optimal transforms in

transform coding. In this paper, we were interested in the per-

formances of the transforms returned by GCGsup and ICA-
orth when applied to the compression of well-known grays-

cale images. Experimental results showed that the new trans-

forms are 1) comparable to the classical 2-D DCT according

to the PSNR measure and 2) yield better visual image quality

(better preservation of lines and contours) than the 2-D DCT.

A further work under consideration is to design a low

complexity image coder based on the class-adapted transforms

returned by GCGsup and ICAorth and compare its perfor-

mance to JPEG and JPEG2000. Furthermore, some work

have already begun on the application of GCGsup and ICA-
orth to the compression of satellite images [9].
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