
SIGNED BINARY DIGIT REPRESENTATION TO SIMPLIFY 3D-EZW

Emmanuel Christophe† ∗, Pierre Duhamel‡ and Corinne Mailhes∗

† CNES, BPI 1219, 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France
∗ TeSA/IRIT, 14 port St Etienne, 31000 Toulouse, France

‡ CNRS/LSS, Supelec Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France

e.christophe@ieee.org, pierre.duhamel@lss.supelec.fr, corinne.mailhes@enseeiht.fr

ABSTRACT

Zerotree based coders have shown a good ability to be suc-

cessfully adapted to 3D image coding. This paper focuses on

the adaptation of EZW for the compression of hyperspectral

images with reduced complexity. The subordinate pass is re-

moved so that the location of significant coefficients does not

need to be kept in memory. To compensate the quality loss

due to this removal, a signed binary digit representation is

used to increase the efficiency of zerotrees. Contextual arith-

metic coding with very limited contexts is also used. Finally,

we show that this simplified version of 3D-EZW performs al-

most as well as the original one.

Keywords: Image coding, EZW, Signed binary digit rep-

resentation.

1. INTRODUCTION

In the context of image compression, wavelet transform has

shown a good ability to decorrelate image pixels. Efficient

techniques to code these wavelet coefficients have been pro-

posed. EZW successfully makes use of the relation of wavelet

coefficients in zerotrees [1]. EBCOT, the coder for JPEG

2000 focuses on the neighborhood of each coefficient using

contextual arithmetic coding [2]. In this standard, a total of

18 different contexts are used according to the value of neigh-

boring coefficients.

This paper considers the zerotree-based compression

techniques in conjunction with signed-binary representations

and arithmetic coding, particularly in the context of 3D im-

age encoding. The 3D images used here are hyperspec-

tral images from the JPL/NASA airborne sensor AVIRIS

(http://aviris.jpl.nasa.gov). The same methods remain valid

for medical images as magnetic resonance (MR) or computed

tomography (CT) which are also formed of several slices. Hy-

perspectral images involve observing the same scene at differ-

ent wavelengths. Typically, each image pixel is represented

by hundreds of values, corresponding to various wavelengths.

These values correspond to a sampling of the continuous light

spectrum emitted by the pixel. This sampling of the spectrum

at very high resolution enables pixel identification from its

physical characteristics. Hyperspectral images can be seen as

three dimensional data where two dimensions correspond to

the spatial scene observed and the third dimension to the light

spectrum of the pixel.

The highlight of this paper is not on the choice of the

wavelet form, thus the popular 9/7 wavelet is chosen for lossy

compression and the 5/3 for lossless compression. The de-

composition is first done for each spatial plane in a Mallat’s

decomposition scheme and then for each spectrum (the third

dimension) as this decomposition was shown to be nearly op-

timal [3, 4] (Figure 1).

A short description of the EZW algorithm [1] is given in

section 2. A drawback coming from the use of the subordi-

nate pass is explained. In section 3, successive improvements

are described to finally reach a version of EZW performing al-

most as efficient as the original one in terms of rate/distortion

tradeoff, while offering simpler implementation, since it does

not require the use of the subordinate pass. The progression

of the proposed improvements is highlighted on a particular

hyperspectral image in terms of PSNR and MSE. Final re-

sults on different hyperspectral images are given in section 4

showing that the proposed simplified EZW algorithm leads to

positive conclusions on the use of signed binary digit repre-

sentation within compression algorithms.

2. EZW ALGORITHM

2.1. Zero-tree coding

The original EZW algorithm is described in [1] and a 3D

adaptation is provided in [5]. The idea is to perform suc-

cessive encoding of the different bitplanes of the wavelet co-

efficients. For each bitplane, a tree structure is defined. The

coding algorithm involves two steps. The first step is called

the dominant pass (or significant pass). Each bit is encoded

using one of the four symbols: ZTR for zerotree root (the

current coefficient and all its descendants in the tree are non-

significant), IZ for isolated zero (at least one descendant is

significant), POS or NEG (the current coefficient is signifi-

cant and either positive or negative). The second step, called

subordinate pass (or refinement pass), concerns the coeffi-
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cients previously declared as significant and encodes the cor-

responding bit in the current bitplane. In the 2D-EZW case,

the tree structure of the coefficients is induced by the wavelet

decomposition. However, in the 3D case, there are several

possibilities to define the relationship between coefficients.

For example, in [6], only the spatial link between pixels is

used. However, it has been shown in [4] that the most ef-

ficient tree structure for EZW uses both spectral and spatial

link. Therefore, the overlapping tree structure illustrated on

figure 1 is used. The EZW algorithm used in this paper for

reference is programmed using ANSI C and produces similar

performance to the original paper. The wavelet transform and

the arithmetic coder are performed using the latest version of

the QccPack library [7].

Fig. 1. Illustration of the wavelet decomposition and tree structure.

2.2. One drawback

A drawback of EZW is the memory required to store the co-

efficients already classified as significant. These coefficients

are processed during the subordinate pass and should not be

processed during the dominant pass. One bit of memory at

least is required for every coefficient of the image. One so-

lution to remove the need for this memory is to remove the

subordinate pass. In this situation only the dominant pass is

processed for each bitplane which also eases the dependancy

between bitplanes coding and makes multithreading possible.

Coefficients are considered as insignificant if the bit in the

bitplane is 0 and significant otherwise. However this simple

change causes a loss in performance, since the average length

of the codes is increased. This results in a loss of more than

2 dB PSNR (Table 1).

The next part focuses on providing coding of bitplanes

without any significant losses i.e. increasing the efficiency of

the dominant pass for every bitplane.

Rate 3D-EZW Without subordinate pass

(bpppb) MSE PSNR MSE PSNR

1.0 106.15 76.07 193.73 73.46

0.5 445.22 69.84 685.49 67.97

Table 1. Effect of removing the subordinate pass. Results are for

Moffett Field AVIRIS image (image details in section 4).

3. IMPROVEMENT

3.1. Increasing the number of zeros

Zerotrees high performance is due to their ability to encode

a large number of zero coefficients using only one symbol.

However, if all bitplanes are processed with a dominant pass,

when going down the bitplanes, the probability of having 0

on a lower bitplane for a given coefficient tends to be close to

0.5. Moreover, these zeros tend to be randomly distributed,

thus hurting the capabilities of zerotrees to efficiently gather

these coefficients.

One strategy to increase the compression capability is to

increase the proportion of zeros in each bitplane. A possible

solution is the use of signed digit representation. A signed

binary digit representation of a number n is a sequence of

digits a = (. . . ,a2,a1,a0) with ai ∈ {−1,0,1} such as n =

∑∞
i=0 ai2

i.

The number 119, for example in classical binary notation

is (0,1,1,1,0,1,1,1) as it is equal to 1∗26 +1∗25 +1∗24 +
1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20. If a ternary alphabet {−1,0,1} is

used instead of a binary one, the number 119 can be noted

(1,0,0,0,−1,0,0,−1) as it is equal to 1 ∗ 27−1 ∗ 23−1 ∗ 20

thus increasing the proportion of zeros.

The signed binary digit representation for a given num-

ber is not unique. Generally, the interest is in representations

which have a maximum of 0s. A simple algorithm is pro-

posed in [8] to convert standard binary to signed binary digit

representation. This algorithm leads to the non-adjacent form

(NAF) where a non zero digit is necessarily followed by a

0. This form is widely used for fast exponentation in crypto-

graphic systems.

To measure the efficiency in increasing the amount of zero

coefficients, we compute the proportion of zeros after the first

significant bit. For the wavelet transform of an hyperspectral

image of 256×256×224 coefficients, the average number of

bits after the first significant bit, the number of zero bits after

this first significant bit and the proportion of zero bits versus

non zero are detailed in table 2. As shown in this table, the

binary-signed digit representation managed to increase signif-

icantly the proportion of zeros for lower bitplanes: more than

60% of 0s against 50% before.

EZW is implemented using binary signed digit represen-

tation (NAF) and each bitplane is processed separately with

a dominant pass. However, even if we can observe a gain of

1 dB using any of the signed binary digit representation (Ta-

ble 3), this improvement is not sufficient to recover from the
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Notation Average num. of bits Number of Proportion of

after the first sig. zero bits zero bits

Binary 2.72 20 490 955 51.28%

NAF 3.12 29 263 791 63.83%

Table 2. Zero bit proportion after the first significant bit.

Rate Binary NAF

(bpppb) MSE PSNR MSE PSNR

1.0 193.73 73.46 149.07 74.60

0.5 685.49 67.97 549.56 68.93

Table 3. EZW with independent processing of each bitplane (with-

out subordinate pass).

loss due to the removal of the subordinate pass. We do not

reach the original performance of table 1.

3.2. Using the local dependencies

However, this strategy does not take into account the values of

the neighboring coefficients or bits, even if the number repre-

sentation now provides useful information. First consider the

coefficient at the same location on the previous bitplane. In

the case of the NAF, this dependency is easy to take into ac-

count: if this coefficient on the previous bitplane is 1 or −1,

we know that the coefficient on the current bitplane is 0.

Consider also the values of the neighboring coefficients in

the same bitplane. A simple way to take them into account is

to use contextual arithmetic coding. Only three coefficients

on the same bit plane are considered. These coefficients are

those preceding the current pixel in the three directions of the

hyperspectral wavelet cube.

Denote ηs, ηl and ηb, the preceding coefficients on the

three directions. Thus, we have:

• ηs(i, j,k) the value at position (i−1, j,k),
• ηl(i, j,k) the value at position (i, j−1,k),
• ηb(i, j,k) the value at position (i, j,k−1).

Since the bitplanes are considered separately, ηs, ηl and

ηb are within the set {−1,0,+1}. We consider the valuation

function for the neighborhood η defined as η = ηs + 3ηl +
9ηb. This function is a bijection between all possible neigh-

boorhoods and the integers between−13 and 13.

We can plot the probability of a given coefficient at lo-

cation (i, j,k) to take the values −1, 0 or 1 according to the

neighborhood values represented by the function η. The prob-

ability curves are presented on figure 2. These probabilities

are computed for the 256×256×224 Moffett Field image on

all bitplanes. Thus, several millions of data are taken into ac-

count. From these curves, we can see that one neighborhood

clearly differs in term of probability compared to the others,

when η = 0 i.e. ηs = ηl = ηb = 0. With this neighborhood,

the probability to have a 0 for the current coefficient is very

high.

Fig. 2. Probability of having value −1, 0 or 1 for the current co-

efficient according to the neighborhood value with the NAF form.

The 27 possible neighborhoods are presented on abscissa according

to the value of η.

Rate Non contextual Contextual

(bpppb) MSE PSNR MSE PSNR

1.0 149.07 74.60 121.38 75.49

0.5 549.56 68.93 457.77 69.72

Table 4. EZW with independent processing of each bitplane NAF

with and without contextual coding.

As the differences between other cases remain low, the

context for the arithmetic coder will be separated in two cases:

η = 0 and η �= 0.

For the NAF, a non zero value for a coefficient at a certain

bitplane will be followed by one 0 at the next bitplane (hence

the reason for the denomination non-adjacent form). In this

case, it is not necessary to give any output for this 0. Note that

this strategy does not require to store the locations of these

ones in the previous bit plane : the following zero is generated

together with the one at the decoder.

This latest version of EZW without subordinate pass us-

ing NAF and contextual arithmetic coding is referred to as

3D-EZW-NAF. First results of this 3D-EZW-NAF coding are

given in table 4.

4. RESULTS

3D-EZW-NAF is applied to a 256× 256× 224 extract of the

scene 3 of f970620t01p02 r03 run from AVIRIS sensor on

Moffett Field site. This part is from the lower right angle of

the scene and is the most difficult part of the image to com-

press (urban area). Another image is a 256×256×224 extract

of the scene 1 of f970403t01p02 r03 AVIRIS run over Jasper

site. This part is from the top left angle of the scene. These

two images are in radiance and correspond to the signal re-

ceived by the airborne sensor. These two scenes are widely

available and popular in experiments on hyperspectral image
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Rate 3D-EZW 3D-EZW-NAF

(bpppb) MSE PSNR MSE PSNR

Moffett 1.0 106.15 76.07 121.38 75.49

Moffett 0.5 445.22 69.84 457.77 69.72

Moffett 0.25 1407.34 64.85 1514.81 64.53

Jasper 1.0 40.56 80.25 43.49 79.95

Jasper 0.5 139.31 74.89 140.76 74.84

Jasper 0.25 391.31 70.40 411.75 70.18

Table 5. Performance comparison between 3D-EZW and the sim-

plified version using NAF on AVIRIS image Moffett and Jasper.

Rate 3D-EZW 3D-EZW-NAF with subordinate pass

(bpppb) MSE PSNR MSE PSNR

1.0 106.15 76.07 112.42 75.82

0.5 445.22 69.84 427.36 70.02

0.25 1407.34 64.85 1399.51 64.87

Table 6. Comparison between 3D-EZW and 3D-EZW-NAF with

subordinate pass.

coding.

Mean Square Error (MSE) and Peak Signal to Noise Ra-

tio (PSNR) for different rates are given in table 5 for Mof-

fett Field and Jasper images. The rate is given in bit per

pixel per band (bpppb), the PSNR in dB is calculated as

PSNR = 10log10(2
16−1)2/MSE [9].

The use of the NAF enables us to recover more than

2 dB from the loss resulting from the removal of the subor-

dinate pass. The performance of EZW without subordinate

pass comes very close to the original EZW without the need

to keep the list of significant coefficients in memory (sav-

ing 1 bit of memory per coefficient during the compression:

14.7 Mbits), and making the hardware implementation easier.

The full rate-distortion curve is presented on figure 3 for the

Moffett image.

Fig. 3. Comparison of compression performance between 3D-EZW

and the 3D-EZW-NAF version without subordinate pass.

Even if the original purpose was to remove the subordi-

nate pass to ease the memory requirements, we can check the

performance of the signed binary digit representation with the

subordinate pass (Table 6). The quality obtained is very close

to the reference version of EZW and even exceeds it for some

rates (0.5 bpppb and 0.25 bpppb).

5. CONCLUSION

Signed binary digit representations, particularly the NAF,

have shown a good ability to compensate for the removal of

the subordinate pass in the EZW algorithm. This compensa-

tion is not as significant as expected but its use in conjunction

with contextual arithmetic coding enables a simplified algo-

rithm to perform almost as well as the original one. On top

of the reduction in memory requirements, this new version of

the algorithm allows an easy multithread implementation.

The use of signed binary digits is typically to enable fast

exponentiation and it is not common to use it to increase the

proportion of zeros. Binary signed digit representations have

shown a good ability for that and such a use could be applied

to other compression algorithms.
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