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ABSTRACT

One-dimensional mappings in the log-polar and in the
inverse-polar spaces are proposed. Based on these
mappings, a two-step search strategy has been developed to
recover the eight parameters of a general projective
transformation between two image patches. First, the four
affine parameters are recovered using the one-dimensional
log-polar mapping. Secondly, the two projective parameters
are recovered using the one-dimensional inverse-polar
mapping. At each step the recovery is done by mapping only
two line pairs. The remaining two translational parameters
are determined by applying these two mappings to an
exhaustive search. The proposed mapping strategy has
successfully been used to recover different two-dimensional
transformations between real images.

Index Terms— image registration, video coding, image
motion analysis, stereo vision, correspondence problem.

1. INTRODUCTION

Image registration and matching features from different
images is a fundamental image processing task with
applications in video processing and computer vision. The
goal of image mapping is to find a geometric transformation
between two image patches of the same scene taken from
different locations (or view points) and/or at different times.
Because it is often the first step to a variety of tasks in image
processing and computer vision, a flexible and robust
approach to image mapping becomes crucial.

Much research has been done on image registration for
over twenty years [l]. A general framework of image
mapping proposed in [2] consists of four components:
feature space, similarity measure, search space and search
strategy. Based on which feature space and search strategy
are employed, there are two different approaches that have
been developed to match images under large deformations.
They can be referred to as the intensity-based optimal search
[8, 6, 1, 5, 12] and feature-based exhaustive search [13, p.
195 and p. 155, 7, 9, 10]. Some promising results have been
obtained when the deformation is small. For example, the
transformation could be recovered using nonlinear methods
in the case where the shift between two image patches is
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within a few (e.g., 2 or 3) pixels [5]. On the other hand,
when the transformation is of a larger scale, it is possible
that a nonlinear method will reach a local rather than a
global solution. Thus, in order for a nonlinear method to
succeed a good initial solution from a linear search is
necessary. The state-of-the-art in a linear search can only be
applied to the cases of finding translations [11, p. 155] or
similarity transformations [12].

To describe a large scale deformation, we need a
projective or at least an affine transformation model [3, p.
251, 11, p. 133]. In this work we focus on developing a
flexible and efficient linear search strategy to recover a large
affine/projective transformation. The contributions of the
present work are that two novel one-dimensional (1-D)
mappings are proposed. We use these mappings in a two-
step search strategy to recover the eight parameters of a
general projective transformation. In the first step, the four
affine parameters (i.e., the upper left part of the projective
projection matrix) are recovered using the 1-D log-polar
mapping. In the second step, the two projective parameters
(i.e., the bottom row of the projective projection matrix) are
recovered using the 1-D inverse-polar mapping. It is noted
that at each step the recovery is done by mapping only two
pairs of line segments. Finally, the remaining two
translational parameters can be determined by combined the
1-D mappings with an exhaustive search method.

2. 1D MAPPINGS
Suppose there exists a 2-D projective transformation
between a source image patch and a target image patch. If
the origins of the local image frames are set at the centers of
these patches, the transformation between a source point,

x|=]x, y]T , and its target counterpart, X'\=[x’, y']T , can be
expressed as:

1
which is a general eight-parameter projective transformation
represented by the four affine parameters a, b, c and d, the
two projective parameters e and f note that the two
translational parameters are set to zero when we center the
image patches. Consider a collection of line segments that
pass through the center of the patch. Then each point is
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located along a 1-D radial line rather than in a 2-D area. In
particular, if x is on a source radial line represented by
y =kx , where k is the slope of the line, Eq. (1) can be
rewritten as:
e (a+0k)x (e +di)x
_(e+jk)x+l’ Y _(e+ﬂc)x+1 ' 2)
If the set of radial lines has sufficient coverage of the image
patch, the transformation of the entire patch can be inferred
from the transformation of radial lines.

2.1. Recovery of four affine parameters

There are six parameters given in Eq. (1) that need to be
recovered. In this section, we propose a 1-D mapping in the
log-polar space that can be used to recover the four affine
parameters, a, b, ¢ and d. By manipulating Eq. (2), we have
a set of two equations about the affine parameters:

c+dk

a+ bk

’

(a+bk) +(c +dk)
1+ &

—log, |(e+ﬂ<)x +1|+ log, r 3)

where k' is the slope of the transformed radial line,

r[: \/ 1+k2 “xD is the radial distance of x,
r’(: \/x’z + y'zj is the radial distance of x', and ¢ is the

logarithmic base.
In recovering the four affine parameters, the term that

’

, 1
log,r'= Elogt

contains the two projective parameters, log; |(e + fk)x +1|,

becomes a measurement error, which is negligible if a small
image patch is used. This observation has been verified with
the experimental results.

From Eq. (3), we see that the slope and radial shift of
the transformed line can be determined by mapping a pair of
two radial lines in the log-polar space. The search space for
such a mapping is two-dimensional since we need to search
for two parameters, i.e., radial angle and radial shift. Further,
one mapping gives two constraints for the four unknown
affine parameters. Thus, in order to recover these parameters
we need to perform at least two mappings of this kind and
then solve for a, b, ¢ and d.

A system of equations formed by the slopesk;, and
radial shifts, s; , of two line pairs is given by:
c+dk; =k}(a+Dbk, )
(a+bk; ¥ + (c+dk; ) = (1 +k )23" 4)
with i =1,2. By solving the above system of equations, we

can determine the four affine parameters, a, b, ¢ and d, as
follows:

1
ky —k, iz =)

L (v,-v)

ko —ky )
i=1--4 are
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7] :
1+k; (6)

k2 _kl (k2u1 —kluz); b=

1
C:H(kzvl —klvz), d=

where u; and v,

with intermediate

parameters determined as:
u;, = + L ) 5
1+k{

The signs of u; and v; can be determined based on the

VvV, =

detected radial angles for the matching target lines.

2.2. Recovery of two projective parameters

Once the four affine parameters have been determined, the
next task is to recover the two projective parameters, e and f.
A 1-D mapping in the inverse-polar space can be used to
accomplish this task. By a different manipulation of the two
equations given in Eq. (2), we have a set of two equations
about the projective parameters as follows:

, c+dk

Ca+bk (7a)
e+ fk
Ja+bk P +(+ dk P

. V1+k? 1
\/(a +bk) +(c+ak)* T §7b
where sgn denotes the signum function and @ is the radial
angle at which the source line lies.

Under a two-parameter projective transformation a
radial line does not change its radial angle (Eq. (7a)).
However, it does shift in the radial direction and this radial
shift is antisymmetric about the origin (Eq. (7b)).

In order to recover these two parameters we need to
perform at least two mappings of this kind and then solve for
e and f a system of the equations formed by using the
detected radial shifts of transformed lines. After two radial

shifts, s;,
searches, we can solve the following two equations,

e+ fk; = sgn(cos0; )s; \/(a +bk '+ (c+dk; =12, (g)
for the two projective parameters, e andf:

1 sgn(cos@)

T=

<

have been detected from one-dimensional

e= ! {kz sgn(cosHl)\/(a +bk, )2 +(c+ dk, )2 s
ky =k,
—k, sgn(cos 0, )\/(a + bk, )2 +(c+dk, )2 8y }
(9a)
f= ! {sgn(cos@1 )\/(a +bk, )2 +(c +dk1)2 5
ky —ky
- 0, W(a+ bk, )’ + (c+dk, ) }
sen(cos, Wla+ bk, + e+, P, o
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2.3. The Algorithm
To briefly summarize, the algorithm for recovering the

parameters of a projective transformation is as follows. The
registration between two image patches consists of an
iteration of the following steps in the search range for the
center of a matching target image patch using the exhaustive
search method:

1. 1-D log-polar mapping: determine the center of the
matching target image patch and the 4 affine
parameters, which has the following steps:

a. Transform source line segments and the target image
patch to the log-polar space (Eq. (3)).

b. Match each source line segment to its target
counterpart in the log-polar space to obtain angle and
radial shift of the target line segment (Eq. (3)).

c. Compute the four affine parameters using the
obtained angles and radial shifts (eqs. (5) and (6)).

2. 1-D inverse-polar mapping: determine the 2 projective
parameters, which has the following steps:

a. Transform source line segments and the target
counterparts to the inverse-polar space (Eq. (7)).

b. Match these pairs of line segments in the inverse-
polar space to obtain radial shifts of the target line
segments (Eq. (7)).

c. Compute the 2 projective parameters using the
obtained radial shifts (Eq. (9)).

3. Compute similarity of the two image patches. If the
similarity is higher, update the record of the results, viz.
the center of the matching target patch and the other 6
parameters of the projective transformation.

It is worth noting that in the implementation of the
above algorithm, we match four source radial lines as
evaluated by the NCC similarity measure. From these four
matches we can obtain altogether six sets of solutions for a,
b, ¢, d, e and f. The final solution for these parameters is an
average of the solutions.

3. EXPERIMENTAL RESULTS

The performance of the 1-D mappings is evaluated
using a similarity measure (NCC) computed for each of two
matching image patches. The images “bark” and “graf”
given in [13] are used for testing. The image patches are
circular with radius 56. The source image patches are
cropped at the center of the image. Thus, the center is at
(382, 256) for “bark” and at (400, 320) for “graf.” For each
source image patch, four radial line segments at 0°, 45°, 90°
and 135° are chosen to be matched to their counterparts in
target images. The dimension of the transformed images in
the log-polar space is set to 224x360, while in the inverse-
polar space is set to 9821x360. The warping between images
is performed using the bilinear interpolation. The center of
the target image patch is determined by exhaustively
searching through a small range of [-6, 6] around a pre-
estimated value.

In the following two subsections, we present the results
of the recovery of the transformations for the zoom and
rotation, and for the viewpoint changes.

5.1 Recovery of transformations for zoom and rotation
Two real image pairs have been tested. The recovered
transformations are given in Table 1 as Transformations (9)
and (10). The source image patch is shown in Figure
1(a).The image registration results are shown in Figures 1(b)
and (c). The similarity measures in these two cases are
0.945064 and 0.812915. Since a large optic zoom (about 4x)
exists in the image pair shown in Figures 1(a) and (c), the
similarity obtained in this case can still be considered as
good.

Table 1 Recovered transformations for real image pairs.

No. Transformation Matrix Center
9 -0.204854 0.343770 0.000000 260 284
-0.354817 -0.202495 0.000000
0.000041 0.000080 1.000000
10 -0.219190-0.148420 0.000000 471 348
0.140366 -0.212022 0.000000
0.000411 -0.001164 1.000000
11 0.427458 0.598612 0.000000 388 345
-0.255641 0.839033 0.000000
0.000279 0.000350 1.000000
12 0.215819 -0.545056 0.000000 346 384

0.199573 0.895796 0.000000
0.000088 0.000026 1.000000

Figure 1 (a) Source imae patch "bark" and four radial
lines (top), and registration results highlighted on real
target images (b) (lower leff) and (c) (lower right).

5.2 Recovery of transformations for viewpoint changes

Two real image pairs have been tested. The recovered
transformation matrices are given in Table 1 as
Transformations (11) and (12). The source image patch is
given in Figure 2(a). To visualize the effect of the recovery,
the image registration results are shown in Figures 2(b) and

I-1023



(c). The similarity measures in these two cases are 0.978086
and 0.942173, both of which are high.

Figure 2 '(a) Source image patch "graf" and follpjr radial
lines (top), and registration results highlighted on real
target images (b) (lower leff) and (c) (lower right).

4. CONCLUDING REMARKS

We presented analyses and experimental results to show that
the 1-D mappings can be used to recover large
similarity/affine/projective transformations. We note that
while the previously proposed block log-polar mapping [12]
can be used to recover similarity transformations, it cannot
be used by itself to recover the affine/projective
transformations. Compared to the 2-D mapping, the
proposed 1-D mappings are more flexible in that it can be
applied to recover a general projective projection matrix.
Furthermore, it is computationally efficient because the
recovery can be done by mapping only two line pairs.

Secondly, the image “graf” has been demonstrated to be
problematic for the block mapping using a nonlinear search
method [6]. Using the proposed 1-D mapping, we

observed that it is easy to find a matching and the obtained
similarity measure is very high. Heavily textured images like
“graf” may have many local minima that prevent the
nonlinear search from reaching the global one. In contrast,
this kind of fine texture is a useful aid to the 1-D mappings.

As the immediate future work, it is possible to extend
the present work to a multiscale-based approach to recover
the translation in a large search area.
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