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ABSTRACT

Video compression algorithms almost universally rely on block match-

ing algorithms (BMA) to exploit the temporal redundancy in image

sequences. However block matching is extremely computationally

intensive, especially if sub-pixel accuracy is desired. We propose a

fundamentally different approach to obtaining motion vectors using

the principles from gradient based optical flow but in a form fully

compatible with any macro-block based video compression scheme.

Experimental results show that in many cases, the gradient approxi-

mation to block matching results in videos within 0.3dB PSNR to

BMA at sub-pixel resolution while being potentially much more

computationally efficient and easier to implement at the hardware

level.

Index Terms— Block matching motion estimation, Optical flow,

hardware friendly, CMOS image sensor

1. INTRODUCTION

Although digital video playback has become ubiquitous, the abil-

ity to effectively encode video in a real-time portable environment

is still an elusive goal. Video compression is a highly asymmetric

process due to the sheer computational effort required to obtain the

motion data necessary to reduce the high amount of temporal cor-

relation within video sequences. As a result, sophisticated modern

video codecs like H.264, while capable of high image quality at low

bit-rates, are not implementable in cost conscious, low power elec-

tronics.

Alongside with advancements in video compression algorithms,

improvements in CMOS manufacturing havestarted to realize the po-

tential of incorporating increasing functionality at the pixel level.

Focal plane based processing, such as integrated analog-to-digital

conversion [1], motion detection [2], and image filtering [3] illus-

trate the possibilities of CMOS image sensors beyond the task of

just simply taking pictures. Because pixel level computations take

place in a highly integrated and parallel manner, these tasks can be

completed at a much higher efficiency, in terms of both throughput

and power consumption.

Of particular interest are a class of CMOS imagers with focal

plane motion estimation [4], [5]. Because of architectural consid-

erations, all universally employ motion estimation based on optical

flow methods that involve the spatiotemporal derivatives of an image

sequence. Typically such devices are intended for image analysis ap-

plications like target tracking or autonomous navigation and produce

a dense per pixel motion vector field. To present, little, if any, work

has been conducted in applying this data to video coding owing to

the large disparity in the required output data format.

However, attempts at using optical flow to encode video are not

new. Previous approaches have generally involved directly using a

dense optical flow field to encode the motion parameters [9], [11], [12]

with the hope that optical flow fields would provide better frame pre-

diction. Yet, these approaches suffer from several problems. Nearly

all use the Horn and Schunck optical flow algorithm [7], which is

both complex and results in poorer prediction than block matching.

Secondly the output is a single vector for each pixel, which increases

the amount of motion parameters for transmission as well as being

completely incompatible with any established standard. As a result,

most have concluded that optical flow motion estimation is ill suited

for video compression [9].

Interestingly, recent research has also delved into the possibil-

ity of using BMA vectors contained in a compressed video stream

for optical flow approximation [10]. In contrast, the possibility of

the reverse has received little attention, even in the light of optical

flow capable CMOS imagers. In this paper, we present a fresh ap-

proach based on the Lucas and Kanade method [6] that is fast, due to

its non-iterative nature (unlike Horn and Schunck) and accurate [8].

The proposed algorithm is amicable to focal plane implementation,

compatible with the standard macro-block video compression codec

and performs close to full sub-pixel BMA.

2. OPTICAL FLOW FOR VIDEO COMPRESSION

2.1. Overview of Motion Estimation

Optical flow in computer vision seeks to obtain a dense vector field

that maps the movement of pixels, corresponding to the objects cap-

tured by the camera, from one pixel to the next. This is an inherently

ambiguous problem since it is impossible to fully ascertain the mo-

tion of objects in a 3-D environment from 2-D images. Issues like

the aperture problem make obtaining the true optical flow a difficult

if not impossible task. Many algorithms have been developed over

the past twenty years [8], prominently the Horn and Schunck [7] and

Lucas and Kanade [6] methods which are both based on the spa-

tiotemporal derivatives in a video sequence.

In contrast, motion estimation in video coding is a well posed

problem. The goal of a coding vector is to compactly represent the

displacement of macro-blocks from a previous frame to best predict

the current one in order to minimize the data to be transmitted. In
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Fig. 1. Both optical flow and BMA seek to minimize the MSE

between two images. Block matching operates on the image directly

whereas optical flow examines a linear approximation.

many cases, these vectors correspond to the actual motion observed

by the camera, although it not a necessary criteria. Problems arise,

however, when the video encoder is constrained by the available pro-

cessing power. To that end, many fast BMAs have been proposed to

make the process more efficient. Likewise, we propose an approxi-

mation to block matching but based on a gradient based optical flow

algorithm.

2.2. Optical Flow and BMA Equivalence

Although it may appear that optical flow and BMA are inherently

incompatible, they are at a fundamental level, equivalent. It has

been shown that block matching and optical flow provide numeri-

cally equivalent results in the case of purely sub-pixel motion esti-

mation [13].

The main question in video coding is obtaining the best match

between a block in one frame with the previous frame. It is a non-

linear optimization problem minimizing the MSE or maximizing the

cross-correlation between two images. For a given macroblock in an

image G1 at location (i, j), the goal is to find the identical region in

a previous frame, G0 and the associated displacement vectors (u, v)
from the initial point at (i, j).

G0(i + u, j + v) = G1(i, j) (1)

The solution to the aforementioned equation can be determined by

minimizing the square of the differences between,

arg min
X

(G1(i, j)−G0(i + u, j + v))2 (2)

Block matching simply systematically tries every possible combina-

tion of (u, v) and returns the pair which results in the least MSE.

Two problems are immediately apparent. First, only integer shifts

are allowed, whereas the optimal solution may lie in between the

sampling grid. Secondly, trying every possible combination incurs a

large speed penalty, especially if interpolation is used to mitigate the

previous concern. However, given that one is willing to accept the

speed penalty, full exhusative BMA will always produce the optimal

prediction vectors.

Optical flow begins with the brightness constancy constraint equa-

tion (BCCE) [7], of which Eq. 1 can be recognized as it’s discreet

form. Expressing G1 and G0 as functions of space-time (the tempo-

ral component is implicit and normalized due to the constant frame

rate), each pixel can be written out as a first order taylor series ap-

proximation

G0(i + u, j + v) ≈ G0|(i,j) +
δG0

δx
|(i,j)u +

δG0

δy
|(i,j)v (3)

and the expression can be rewritten as,

G1 = G0 + Gxu + Gyv (4)

G1 −G0 = Gxu + Gyv. (5)

Since G1 −G0 represent the the temporal gradient, Gt, the above

equation is just the discreet version of the BCCE [6] [7]. Now the

minimization problem becomes,

arg min [G1 − (G0 + Gxu + Gyv)]
2. (6)

Or in other words, obtaining the best match between the linear ap-

proximation of G0 and G1. A video coding marcoblock imposes

the additional condition that all pixels in a marcoblock share the

same motion vector (which sidesteps the aperture problem for a sin-

gle pixel). Each pixel contributes one constraint equation,
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Ax = b (8)

Ax is the linear approximation of G0 translated by the motion vec-

tor (u, v) for the macro-block. Minimizing the MSE error can be

accomplished with a least mean squares fit,
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which is a derivation of the Lucas-Kande optical flow equation [6].

However because the goal is to obtain a macro-block motion vector,

there are several differences from the traditional optical flow solu-

tion. First, only one vector is obtained for the whole block, and no

attempt is made at solving a per-pixel vector field. Secondly, the gra-

dients are not biased or weighted since the end goal is to minimize

the MSE for the entire block.

In essence, the modified Lucas-Kande optical flow algorithm re-
casts the block matching problem into a linear form with a closed so-
lution (Fig. 1). As long as the images have reliable spatial derivatives

and the motion is small enough such that the first order derivative

terms dominate, the Lucas-Kanade optical flow algorithm produces

results close to using sub-pixel block matching (Fig. 2).

More importantly, solving the Lucas Kanade equation intrinsi-

cally yields motion vectors of sub-pixel resolution. The gradient ker-

nels used for differentiation are directly linked to the interpolation

filter used for sub-pixel block matching [13]. As results show, the
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Fig. 2. Motion fields from block matching and the modified L-K

optical flow. Foreman (top), Mobile and Calendar (bottom). All

motion vectors are computed to half-pixel precision.

sub-pixel precision of the gradient based solution greatly decreases

the prediction error, just as with sub-pixel block matching. However,

with the gradient algorithm, computing sub-pixel vectors incur ab-

solutely zero addition overhead - the solution is simply truncated to

the desired precision.

2.3. Complexity

A direct comparison between the aforementioned optical flow mo-

tion estimation and block matching is difficult to obtain. The com-

putational effort of a full search BMA is directly related to the size

of the search window. In the case of an optical flow algorithm, there

is no specific search window, and the effective range is determined

by the characteristics of the image. In addition, the optical flow al-

gorithm does not require any overhead to obtain sub-pixel motion

vectors as the interpolation is amortized within the gradient filters.

As a reference, the total number of operations required to com-

pute the motion vectors for a CIF size image (352× 288) are as fol-

lows. A total of 2,939,897 instructions are required to obtain the gra-

dients. Each macro-block then needs 2,555 instructions followed by

a simple 2x2 matrix inversion (4 multiplications and a subtraction)

to solve the motion vector. For a CIF frame this translates into total

of 3,951,677 operations in a purely digital implementation, which is

roughly comparable to a integer only BMA over a small 2× 2 search

window in each direction.

3. PROPOSED HARDWARE IMPLEMENTATION

It is not the goal of this paper to advocate the universal use of optical

flow for video coding motion estimation. The development of fast

BMAs has been, and still is, an area of many advancements. The true

strength of the spatiotemporal model is realized when implemented

at the focal plane level. For example an image sensor computing

the normal flow [5] performs essentially all the necessary arithmetic

computations (but for a different algorithm) in real time at a cost of

only 2.6mW for a 95× 52 array.

A proposed image sensor would share much of the same fea-

tures and circuitry as the normal flow imager. In particular, it will

utilize the same architecture, which includes the focal plane ana-

log computational as well as memory circuits. Pixel design and the

circuits that compute the spatiotemporal gradients can remain as-

is. The only significant difference would be replacing the current

mode divider (which is used to compute the ratios of the gradients

for normal flow) into a multiplier. These scheme would alleviate the

majority of the computational burden off external digital processors,

leaving only the summation of the gradient products to construct the

Lucas-Kanade equation and a final matrix inversion obtain the mo-

tion vectors.

4. EXPERIMENTAL RESULTS

In Fig. 2, the motion vectors from BMA and optical flow from two

common video coding test sequences (Mobile and Foreman) are plot-

ted. As expected, in the smooth regions in both videos, vectors from

block matching and optical flow are identical. Areas that do not ful-

fill the BCCE produce large motion vectors, as the BMA attempts

to find the best candidate inside the window, whereas the optical

flow computation usually produces just a zero vector. Of particular

interest is the bottom edge of the calendar in the mobile sequence.

The BMA produced large vectors due to the same pattern observed

throughout edge (the correspondence problem). In this case, the op-

tical flow algorithm actually outperformed BMA due to the handling

of sub-pixel motion estimation. Whereas sub-pixel accuracy is auto-

matically handled by the Lucas and Kanade equation, the BMA first

obtains the best integer match (resulting in a large initial displace-

ment) and refines to sub-pixel precision in a separate step. Conse-

quently, the optical flow approach, which inherently handles sub-

pixel accuracy, yielded smoother results than the BMA.

However, the major problem with using gradient based motion

estimation is the reliability of the linearized model. For the optical

flow algorithm to produce good coding vectors several conditions

must be met. First, the BCCE assumption must be valid. Secondly,

the first order taylor series must be sufficiently close to the actual

image and motion observed. In block matching, the effective range

is clearly set by the bounds of the window. In gradient based motion

estimation, there is no hard number for the effective window, which

is determined by a combination of the smoothness of the image and

the motion observed. This also implies that the frame sampling rate

must be sufficiently high to avoid temporal aliasing such that a valid

temporal gradient can be computed. While this imposes more lim-

itations on the effectiveness of the motion compensation than with

BMAs, for certain classes of video sequences (teleconferencing for

example), the gradient based model is generally valid and compara-

ble to BMA.

In order to validate the use of gradient based motion estima-

tion in a standard video compression framework, the baseline TMN

H.263 reference encoder was used. The motion estimation routines

were replaced by the optical flow algorithm described in the previ-

ous section. All other aspects of the encoder were kept as-is since

it is the optical flow method is intended as a drop in replacement

for BMA. For both the BMA and optical flow, motion vectors of

sub-pixel precision were used for coding. Only I and P frames are

used (although B frames are theoretically possible) in order to sim-

plify the testing model. The built in rate limiter was used to produce

videos at various specific target bitrates.
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Fig. 3. Rate distortion curves for four video test sequences using

full BMA and optical flow.

Fig. 4. A plot of the prediction quality of the full BMA and opti-

cal flow for frames 1-100 of the ’mobile’ sequence. Displayed are

the direct frame difference, with compensation using block match-

ing and optical flow. The variance of the residual data is plotted as a

metric of compressibility.

In most sequences, the performance of the optical flow motion

estimation comes quite close to that of the full half pel BMA. In

the case of the ’tempete’ sequence, performance remains close to

within 0.3dB PSNR over all bitrates. Not surprisingly the ’foreman’

sequence also performs well due to the smooth regular motion in the

sequence. It is quite interesting to observe that the optical flow model

is quite capable even the presences of the complex motion as in the

’mobile’ video and performs nearly identically to full BMA from

1.5Mbps up. The only instance where the optical flow algorithm

lags behind in the full BMA is in the ’bus’ movie where the BCCE

fails to properly approximate the large panning movements.

5. CONCLUSION

Block matching algorithms are not the only choice for obtaining the

motion vector information necessary for efficient video coding. We

demonstrate that the gradient based optical flow motion estimation

is a valid approximation to BMA to a sub-pixel precision, at both the

theoretical and experimental levels. An optical flow approach readily

lends itself to implementation with CMOS image sensors and opens

up the possibility for a novel hardware accelerated motion estimation

scheme ideally suited for portable, low power electronics.
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