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ABSTRACT

We present a new method that permits arbitrary region

description in video sequence using a reduced number of

bits allowing promising results in video compression. A

robust unsupervised 3D (2D + t) segmentation is used to

detect arbitrary regions for motion compensated video

coding. The video sequence is first modeled using a

Gaussian mixture model where each pixel, defined by its

spatiotemporal position and its color vector is supposed to

be generated by one of the mixture components. This

permits to segment the video sequence into objects each one

modeled by one Gaussian distribution. Grouping the

mixtures in a binary tree defines a hierarchical

representation of the video objects and a gradual

segmentation. This segmentation is then used for region

description in a motion compensated video coder. This

provides a large improvement in motion bits budget. When

compared to a H.264 video coder, promising results were

obtained.

Index Terms— video coding, video segmentation,

stochastic models, Gaussian Mixture Models.

1. INTRODUCTION

The purpose of video segmentation is the extraction of static

video background and independent objects from a video

scene. It is considered to be a mid-level scene understanding

in computer vision. Video segmentation has important

applications in video indexing, searching, coding and

motion estimation.

Megret and DeMenthon classify video segmentation

techniques in three categories [1]: (1) segmentation with

spatial priority where the pixels of each frame are grouped

and then a trajectory is detected; (2) segmentation by

trajectory grouping where the trajectory of each pixel across

frames is detected and then the pixels are grouped; (3)

spatiotemporal segmentation where the pixels from all the

frames are grouped in space and time simultaneously. This

last category is the most powerful as it does not give any

preference to a given dimension. Moreover, it is known that

human vision recognizes important structures

simultaneously in space and time [2].

Salembier et al. use connected operators to segment

images and video sequences and to build a tree

representation of features. Events are then extracted from

the compact binary tree model [3][4].

Greenspan et al. propose a probabilistic framework

based on Gaussian Mixture Models (GMM) to describe

video regions [5]. The GMM is used to model the pixels of a

video scene where every pixel is represented by a vector

including its spatiotemporal position and its color. Once the

GMM model parameters determined, each pixel in the scene

is associated with the most likely component of the GMM.

Adjacent pixels associated with the same component define

a spatio-temporal (or a 3-D) object of the scene.

In this paper, we propose to extend the use of GMM

model by building a hierarchy of video regions based on an

initial GMM. This allows the determination of the optimal

number of regions. Actually, starting from an initially

estimated model a hierarchy is built using simple model’s

components merging. This leads to a hierarchy of 3-D

objects for video understanding and coding. This hierarchy

of video objects allows a gradual segmentation of the video

sequence into objects with variable level of precision.

The hierarchical video segmentation algorithm is applied

in a video coding scheme. Hybrid video coders divide a

frame into small rectangular blocks and encode the motion

of each block. The residual error is then transformed,

quantized and entropy coded. Major compression gains can

be achieved by encoding larger arbitrary regions. The

problem of this approach is the region description itself that

would require a large number of bits. Therefore, a tradeoff

must be found between the precision of the video

segmentation and the complexity of the objects definition.

The proposed GMM based segmentation allows arbitrary

region description with a reasonable number of bits due to

the parametric form of a GMM. This allows us to potentially

achieve significant compression gains.

2. GAUSSIAN MIXTUREMODELS FOR VIDEO

REPRESENTATION

Gaussian mixture models (GMM) are stochastic models

defined as a mixture of components each of them being a

Gaussian probability distribution function. A stochastic

process following such models generates vectors in an

observation space. GMMs have been used widely in

different domains. In the following, the observation space

on which GMM are applied, their training, and their use in

video segmentation are presented.
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2.1. Feature vector extraction

Each pixel is considered to be an element of a video region

in both space and time. Its coordinates are its position in the

video plane, its color and the frame time. The result is a 6

dimensional feature vector.

The color coordinates should be taken in a perceptually

uniform color space, providing perceptual meaning to

Euclidian distances. The possibilities are CIE L*a*b*, CIE

L*u*v*, nonlinear RGB and Y’CbCr. We have tested CIE

L*a*b* and Y’CbCr and both produced similar results.

Digital video uses Y’CbCr natively. Therefore this space

is chosen to represent the color vector to avoid extra

transformations. Sub-sampled chroma values (in the

standard 4:2:0 files) are oversampled before adding to the

feature vector. Selecting the best color space to use depends

on the final application. Finally, all the feature vector

components are normalized to [0; 1] before further

processing.

2.2. Model training

Given a feature vector x, the GMM defines its

probability distribution function as follows:
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where N is the number of components, d is the

dimension of the observation space, i.e. 6, and μi and �i are

the mean vector and covariance matrix of the i
th
component.

The realization of this distribution can be seen as the

realizations of two successive processes; the mixture

component selection and, the feature vector emission by the

selected component. The unique observation of the feature

vector provides incomplete data insufficient to allow

analytic estimation, following the maximum likelihood

criterion, of the model parameters, i.e. the Gaussian

distributions weights, mean vectors and covariance matrices.

The selected component is not observed. This is known as

incomplete data estimation problem.

The Estimation Maximization (EM) algorithm offers a

solution to the problem of incomplete data [6]. The EM

algorithm is an iterative algorithm, an iteration being formed

of two phases; the Estimation (E) phase and the

Maximization (M) phase. The EM algorithm ensures a

convergence towards a local optimum. This local optimum

depends on the initial values given to the model parameters

before starting the training. Thus, the initialization of the

model parameters is a crucial step.

In this work the LBG algorithm is used for initialization

[7]. In the video segmentation task, frames will be grouped

in a sliding window, i.e. a GMM is trained for each window

of frames. The model parameters for a group or window

may be initialized as the parameters estimated on the

previous group. This avoids the application of the LBG

algorithm.

2.3. Number of components in the model

Selecting the optimal number of components in the model is

a tradeoff between processing time, descriptive power and

the quantity of training data. Storage of the GMM

parameters is also important in video coding applications.

The approach used in [5] is to model a certain number of

mixtures each with a different number of components k. The

model that satisfies the Minimum Description Length

(MDL) criterion is selected. If two models satisfy the

criterion, the simpler one (the one with the least k) is

selected. This approach is computationally intensive.

A more economical approach in terms of processing

power is described in [8]. In this approach, starting from an

initial quite developed model a tree is constructed and then

pruned according to some criterion. The new leaves

represent the optimal number of Gaussians. Another

advantage of this approach is that it provides a hierarchical

or multi-resolution representation of the video sequence.

This is detailed in the section 3.

2.4. Segmentation

Sequence segmentation is done by hard decision. Each pixel

is labeled with the Gaussian that provides the maximum

likelihood.

s(x) = argmax wi
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The result of the segmentation phase is a set of k video

regions where k is the number of components in the GMM.

3. CONSTRUCTING A HIERARCHY OF GAUSSIAN

COMPONENTS

Once the model is trained, the Gaussian distributions may be

grouped in a binary tree. This tree is build iteratively by

merging the most similar Gaussians, i.e. the closest in a

distance measure sense. The tree is used to “guess” the

optimal number of Gaussians by pruning the tree according

to some criterion. By varying the criterion parameters, a

multi-resolution representation is generated. This multi-

resolution offers segmentation with variable degree of

precision. It is straightforward that this can be further

developed to have different levels of precision in different

regions of the video sequence.

Distance calculation and Gaussian merging is done

according to [8].

3.1. Tree construction

An unbalanced binary tree is built by successive merging of
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the closest two nodes following the distance. The merged

node replaces the two original nodes and the process is

restarted until we reach the root of the tree. The following

algorithm is used:

• Calculate the distances between all Gaussian pairs.

• Find the minimum distance.

• Merge the two closest Gaussians and replace them with

the resulting node.

• Repeat until there is one Gaussian left, i.e. the root.

3.2. Tree pruning

The constructed tree can be pruned using multiple criteria.

The tree is traversed from its root to its leaves. Depending

on a criterion we select to stop the traversal and select the

node as the leaf node or to continue. Two criteria have been

tested: the first one is the sum of the weights of the branches

going out of a node. This tends to eliminate small objects.

The second criterion is the distance between the branches.

This groups similar regions and thus is better at describing

the sequence.

4. VIDEO CODING USING GMM

Using GMM to segment video sequences can be interpreted

as a way to encode arbitrary regions with a limited number

of parameters to define those regions. A single GMM can be

used to segment a number of frames into coherent regions.

Motion estimation is then applied on these regions to extract

motion vectors. The estimated frame is then error coded.

4.1. Encoding algorithm

A k-component GMM is trained for each group of n frames.

This generates k segments for each frame that can be further

decomposed into dense sub-segments.

The motion vector can be estimated directly from the

GMM parameters. However, to get a more precise

estimation, for each segment, an exhaustive search in all the

possible vx,vy( ) motion vectors in a (-M..M, -M..M) square

is performed. The size of the search space is a compromise

between calculation time and the maximum real motion

vector: A larger M allows more important motion at the

expense of a quadratic increase in the search space.

In order to select the optimal motion vector, each vector

is assigned a weight W =
SSD

N 2
that is calculated using the

following algorithm.

• For each frame n

• For each segment k

• For each motion vector vx,vy( )
• Loop through all pixels P x,y( )of frame n.

• If P belongs to segment k

o If P' x+ vx ,y+ vy( ) belongs to the same

segment k then

� N = N +1
� SSD = SSD+ Y (P ') �Y (P)( )

2

N is the number of matching bits and SSD is the sum of

the square of the differences in luminance between the two

frames.

Finally, the difference between the predicted frame and

frame n+1 is then encoded using DCT and entropy coding.

4.2. Decoding algorithm

In order to generate frame n+1 from frame n, having the

GMM parameters, the motion vectors and the residual error,

it is enough to:

• Segment frame n using the GMM

• Displace each segment using the stored motion

vector

• Apply the residual error correction

5. EXPERIMENTAL RESULTS

5.1. Segmentation experiments

Experiments have been conducted on the Akiyo sequence

using the BECARS toolkit [9]. The two features L*a*b* and

Y’CbCr have been studied. The latter being the native color

space of the sequence. A mixture of 16 Gaussians is used to

model the video sequence of 5 consecutive frames. This

mixture forms the starting point of our modeling algorithm.

The mixture was first trained and the corresponding tree was

then generated. Pruning the tree has led to 5 segments.

Regarding the two methods of pruning, they have been

applied with L*a*b* features. The results show a clear

advantage of using distance-based threshold as expected.

The feature extraction possibilities are studied. The

obtained results are similar. Therefore, the Y’CbCr is more

appropriate since it requires less computational effort.

5.2. Compression experiments

We have worked on the Foreman sequence in QCIF format

(176x144). Each mixture consists of k=16 components. It is

trained on a sequence of 5 frames. There is no overlap in the

frames. We have executed the reconstruction algorithm and

then calculated the peak signal to noise ratio (PSNR).

Classical coders estimate the motion of each block in frame

n+1 from frame n. Here we start with a block from frame n

and estimate its motion. Some pixels in frame n+1 may not

be targeted by any of the k Gaussians after motion

compensation. These are not taken into account in the

calculation of PSNR.

The bits needed to encode a frame correspond to the

Gaussians and the motion vectors. Without taking error
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encoding into account, we need:

2k � nd + f k + kd + kd
d +1

2

�

�
�

�

�
� bits, with:

nd = number of bits needed to encode motion (4 bits)

f = number of bits needed to encode a floating point

number (32 bits)

d = dimension of the covariance matrix (6)

In our experiment, we need 2995 bits/frame. This

information can be compressed using entropy coding. We

have assumed that a factor of 3 can be easily achieved.

In order to compare our results to the H.264 reference

encoder, we have modified it to extract motion compensated

frames before residual error coding. We then calculated the

resulting PSNR. We have also extracted the number of bits

necessary for motion coding. This has allowed us to

calculate D =
bits

PSNR
. This quantity is the number of bits

necessary to gain 1 dB of PSNR. This measurement is

useful to compare the performance of a GMM based coder

to H.264. The D as well as the PSNR are measured on the

Foreman sequence for both the H.264 and the GMM based

coder. The results are plotted in the following figure.

Looking to this figure, the GMM based coder seems to

outperform the H.264 in the number of bits necessary to

gain 1dB in PSNR.

6. CONCLUSION AND FUTURE WORK

In this work, we use a GMM to describe a video sequence.

This model is then used to segment the sequence into 3D

(2D + t) regions. A novel approach is proposed to determine

the optimal number of Gaussian components. This number

of Gaussian components corresponds to the number of

independent objects in the video sequence. We have found

that using a distance criterion, the number of components

can be correctly identified.

Experiments we have conducted validate the idea that

arbitrary region coding using GMMs is very efficient in

terms of bits needed to encode a frame.

The achieved PSNR is far from that achieved by

standard hybrid coders but the number of bits necessary to

gain 1dB of PSNR is very promising. The number of

Gaussians and thus the number of bits is constant. This

means that our approach does not take into account the

variations in the video sequence. To improve this, we need

to select the number of Gaussians based on the PSNR.

Pixels that are not estimated in the target frame are

another problem that must be dealt with. Bi-predictive

frames could be the answer to this problem. Another

improvement would be sub-pixel motion prediction.

In conclusion, we can say that automatic segmentation

could enhance the efficiency of video coding. Work must be

done to produce a full codec that improves on the state of

the art.
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