
AN EFFICIENT IMPLEMENTATION OF UNRESTRICTED MOTION COMPENSATION

IN VIDEO ENCODER

Krit Panusopone, Yinqing Zhao, and Limin Wang

Motorola Inc., Connected Home Solutions

6420 Sequence Drive, San Diego, CA 92121

ABSTRACT

This paper proposes an implementation method to reduce

complexity of motion estimation in the padded areas for

unrestricted motion compensation. The proposed method

avoids repeating the same calculation of motion estimation

cost in the padded areas with identical search outcome as the

conventional motion estimation. The savings realized in this

method depends only on the block size, image size, and the

search range. The proposed method can be applied to

several video compression standards such as H. 263, and

H.264.

Index Terms— Video codecs, Video coding, Motion

compensation, Standards

1. INTRODUCTION

Motion Estimation (ME) is widely used in video

compression algorithms. ME is a computationally intensive

process for video encoder, especially for the recently

approved H.264 [1]. H.264 allows several flexibilities

(variable block size, multiple references, and unrestricted

motion compensation) in temporal prediction process which

helps improve the coding efficiency but adds considerable

complexity to the overall process. This paper proposes an

efficient method to reduce complexity of full search ME in

the padded area. By exploiting the definition of the padding

process, the proposed method reuses partial ME cost results

in calculating the final ME cost in the padded area without

any loss in coding efficiency.

2. UNRESTRICTED MOTION COMPENSATION

Unrestricted Motion Compensation (UMC) was first

introduced in H.263 standard [2], and it has since been an

integral part of all subsequent video coding standards (e.g.,

MPEG-4 part 2 [3], H.264 [1], VC-1 [4]). UMC allows the

encoder to select motion vector (MV) pointing outside the

boundary of the reference picture. This feature is useful

when coding an object that is moving in and out of the

picture. Video coding standard has to define the intensity

value of a pixel outside the picture so that it is identical for

both encoder and decoder to maintain synchronization of the

reconstruction outputs.

In general, padding is used to determine the pixel values

outside the reference picture. In the padding process, the

value of a pixel on the boundary of the reference picture is

repeated for all the pixels outside the boundary along either

the vertical or horizontal direction. Reference picture is

padded so that it is large enough to cover all possible MVs.

There are several methods to store the padded area in the

reference buffer.

Another method for ME outside the reference picture is

to clip the motion vector [5]. Since the pixel value in the

padded area is the same as the value of the pixel on the

boundary, ME uses that pixel value to determine matching

cost instead of using the actual out-of-bound pixel.

With either of the above two methods, the same ME

process (e.g., full search, fast search) inside the reference

picture can be extended into the padded area. However, this

simple extension approach is inefficient as it wastes too

many computational cycles in repeating the same

calculations over the padded area. The main computational

block in ME process is the calculation of the difference

between the current block and a candidate prediction block

pointed by a motion vector, for example, the sum of absolute

difference (SAD).

This paper proposes a method that reduces complexity

of ME in the padded area by reusing some partial calculation

outputs in subsequent operations. The proposed method

exploits the fact that the same operations between pixels in

the current block and pixels in the padded area occur

repeatedly. These calculation results can be stored and

reused to eliminate repeating of the same operations in the

future. The following sections describe the method to utilize

these partial results efficiently in the right, left, top, and

bottom padded areas.

3. THE PROPOSED METHOD

Assume that the reference pictures are of size M×N pixels

and the search window radius xW± pixels horizontally and

yW± pixels vertically with its center at),(yx CC , as shown

in Fig. 1. In the following explanation, SAD is used in

measuring the ME cost and the raster scan is used in

searching the best MV over the search window, that is, the

I 10051424407281/07/$20.00 ©2007 IEEE ICASSP 2007

search window is traversed from left to right, and top to

bottom. Given a block of m×n pixels at location (u,v), the

corresponding SAD with an associated MV(x,y) is calculated

as

∑
−

=
∑
−

=
++++−++=

1

0

1

0

|),(),(|),(
n

j

m

i

yjvxiuXjviuXyxSAD
)

 (1)

Figure 1: Example of a ME in unrestricted MC mode

(shaded area indicates padded area)

3.1. Right padded area

With a raster scan search pattern, the searching process

crosses the right boundary of the reference picture from the

picture area into the padded area. The SAD calculation for

ME in the right padded area can be improved by reusing

some partial results. Let),(yxiΔ be the sum of the absolute

pixel differences in the vertical dimension, that is,

∑
−

=
++++−++=Δ

1

0

),(),(),(
n

j

i yjvxiuXjviuXyx
)

 (2)

where Δi, i = 0,1,...,m-1 can be considered as partial ME

costs.

For a block of m×n pixels at location (u,v), the

prediction block pointed by),(yumMMV −− is the last

candidate before the searching moving into the padded area.

The SAD for),(yxMV , umMx −−> , can be computed

efficiently as follows:

1. Set mm =' and 0=Δ
2. Calculate the SAD with),'(yumMMV −− by

∑
−

=
−−Δ+Δ=−−

1'

0

),'(),'(
m

i

i yumMyumMSAD

3. Set),'(1' yumMm −−Δ+Δ=Δ − and 1'' −= mm

4. If 1'≥m , return to step (2), otherwise, continue to step

(5).

5. For all),(yxMV with uMx −≥ , Δ=),(yxSAD .

The proposed method produces an identical result as the

traditional method. It can work with any other cost functions

(e.g., MSE, MAD) and with any block size (e.g., 4x4, 8x8,

16x16). The proposed method can be summarized by the

flowchart shown in Fig. 2.

The savings realized in the right padded area in terms of

number of pixel difference, S(Right), can be determined as

follows:

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block

Final result is the sum of the cost of the

remaining pixels and reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Compute cost function of the pixels on

the boundary and add to the reuse

result

Figure 2: Flowchart for right padded area

⎪
⎩

⎪
⎨

⎧

−>+−
−≤+<+−−++

+−≤+
=

××+=

⎪
⎩

⎪
⎨

⎧

−<++
−+<≤−−+−

−≥−
=

××+×−+=
+=

∑
=

11

11

11

][]12[)(

112

11

11

]12[]12[)(

)()()(

1

MWCifm

MWCmMifMmWC

mMWCif

T

ntWTransitionS

MWCifW

WMCWMifWCM

MWCif

B

nmWBWOutsideS

TransitionSOutsideSRightS

xx

xxxx

xx

T

t

y

xxx

xxxxx

xx

x

yxx

(3)

3.2. Left padded area

For the padded area on the left, in a raster scan fashion, the

ME process crosses the left boundary of reference picture

from the padded area into the picture area. Since the search

pattern (raster scan) encounters the padded area first, it acts

in an opposite manner compared to ME in right padded area.

The proposed method for the left padded area hence works

in an opposite way. That is, for left padded area, partial ME

cost is subtracted as the search traverses into reference

picture area.

For a block of m×n pixels at location (u,v), all

),(yxMV pointing outside the reference picture with

1)(++−≤ mux have the same SAD value. The SAD for

),(yxMV with 1)(++−> mux can be calculated as

follows.

I 1006

1. Set mm =' and ∑
−

=
++−Δ=Δ

1

0

),1)((
m

i

i ymu ,

2. For all),(yxMV with 1)(++−≤ mux ,

Δ=),(yxSAD .

3. Set 1'' −= mm and),1)((1' ymum +′+−Δ−Δ=Δ − .

4. Calculate the SAD with),1)'((ymuMV ++− by

∑
−

=
++−Δ+Δ=++−

1

'

),1)'((),1)'((
m

mi

i ymuymuSAD

5. If 1'>m , return to step (3), otherwise, stop.

Notice that the partial ME cost is first subtracted at position

(-(u+m)+1,y). This position is where the candidate block

first moves inside the picture boundary (i.e. its rightmost

pixel is at (0,y) position). Compared to the algorithm for the

right padded area, the order of the operation for the left

padded area is reversed, i.e., the SAD of the entire block is

computed first (step 1) and then partial ME cost is iteratively

subtracted (step 3). Fig. 3 shows the flowchart of the

modified algorithm for the left padded area.

Figure 3: Flowchart for left padded area

The savings realized in the left padded area in terms of

number of pixel difference, S(Left), can be determined as

follows:

⎪
⎩

⎪
⎨

⎧

−−≤−−
−≤−<−−−−

−>−
=

××+=

⎪
⎩

⎪
⎨

⎧

−−>−+
+−≤<−−++

−−≤+
=

××+×−+=
+=

∑
=

)1(1

1)1()(

11

][]12[)(

)1(12

11

)1(1

]12[]12[)(

)()()(

1

mWCifm

WCmifWC

WCif

T

ntWTransitionS

mWCifW

WmCWmifmWC

mWCif

B

nmWBWOutsideS

TransitionSOutsideSLeftS

xx

xxxx

xx

T

t

y

xxx

xxxxx

xx

x

yxx

(4)

3.3. Top and bottom padded areas

With a raster scan manner, ME for the top and bottom

padded areas has one major difference from the left and

right padded areas in that the partial ME cost are different as

the search traverses from one pixel to the next in the padded

area of the same row. As a result, searching through the top

and bottom padded areas in raster scan order does not allow

the partial ME cost to be reused and hence requires the same

amount of computation as working inside the picture

boundary.

One way to maintain the effectiveness of the proposed

method is to transpose both the current block and the

associated search area when traversing in the top and bottom

padded areas. In the transposed domain, searching in the top

and bottom padded areas behaves the same as the left and

right padded areas so that UMC in the top and bottom

padded areas can be done efficiently by reusing partial ME

cost results as described in the previous sections.

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block (position at

the k-th column)

Final result is the sum of the cost of the

remaining pixels and the k-th column

reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Compute cost function of the pixels on

the boundary and add to the k-th

column reuse result

Figure 4: Flowchart for top padded area

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block (position at

the k-th column)

Compute cost function of the pixels on

the boundary and subtract it from the k-

th column reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Final result of the k-th column is the

sum of the cost of the remaining pixels

and reuse result of the k-th column

Figure 5: Flowchart for bottom padded area

Another solution for UMC in the top and bottom

padded areas is to store all partial ME costs of the entire row

in the search window. As the search traverse through the

padded area, the partial ME costs in the same column

I 1007

position are updated. This solution works without any

change in the search pattern. Figures 4 and 5 show the

flowchart of this solution for the top and bottom padded

areas, respectively. The savings realized for top and bottom

padded areas can be derived in the same way as for left and

right padded areas and will be omitted in this paper due to

the space limitation.

3.4. Field picture

In H.264, the padding process for field and frame

macroblock (MB) is slightly different for the top and the

bottom padded areas. For field MB, the top and the bottom

padded areas are formed by repeating two boundary lines

(one is in top field and the other in bottom field)

alternatively. Hence, it is necessary to modify the proposed

method in the top and the bottom areas for field MB.

Specifically, two sets of partial ME costs need to be stored

and reused in calculating the final ME costs, one is for the

top field and the other for the bottom field.

4. IMPLEMENTATION

This section describes an implementation of the proposed

algorithm in video encoder. One main difficulty is the region

where redundancy can be exploited through both horizontal

(right or left) and vertical (top or bottom) padded directions.

To handle this issue, we divide the search window into three

parts: top, middle, and bottom region. Top region covers all

candidates in search window such that their vertical

coordinates locate beyond the upper boundary of the

reference picture. Similarly, bottom region includes all

candidates in search window such that their vertical

coordinates locate beyond the lower boundary of the

reference picture. The remaining candidates belong to the

middle region.

Redundancy in the middle region can be handled by the

same procedure described in sections 3.1 and 3.2. Top and

bottom regions are handled differently to exploit redundancy

without sacrificing too much complexity. Transposed

version described in section 3.3 is used in top and bottom

regions.

5. EXPERIMENTAL RESULTS

We implemented two efficient ME algorithms to determine

their performance. The first algorithm (METHOD 1) uses

the idea illustrated in Sections 3.1 and 3.2. The second

algorithm (METHOD 2) uses the idea from Section 4. ME

using clipping method similar to [5] is also implemented to

serve as a benchmark. In these simulations, SAD is used as

the matching cost and search center is aligned with the

coordinate of the current block. Table 1 demonstrates the

savings of METHOD 1 and METHOD 2 in terms of relative

reduction in pixel difference operations over the benchmark.

According to the simulation results, we can see that

METHOD 2 achieves the most savings. The result

demonstrates the impact of redundancy that can be exploited

jointly in both horizontal and vertical padded areas.

Moreover, it shows that the savings increases as the search

range increases but decreases as the picture size increases,

which reflects the ratio of the search area outside the

reference picture to the picture size. The MV outputs of both

methods are identical to those of the benchmark.

TABLE 1: SAVINGS IN PIXEL DIFFERENCE

OPERATIONS

SEARCH RANGE METHOD PICTURE

SIZE 64X64 32X32 16X16

SD 6.7% 3.4% 1.7%

CIF 11.2% 5.6% 2.9%

METHOD

1

QCIF 22.4% 11.3% 5.7%

SD 10.9% 5.5% 2.8%

CIF 19.2% 9.9% 5.1%

METHOD

2

QCIF 36.0% 19.2% 10.0%

6. CONCLUSION

This paper describes an efficient method for UMC in the

padded area using the reused results. The proposed method

significantly reduces the computation cost without any loss

in search quality. It does not incur significant overhead.

Moreover, it maintains the best practice of the

straightforward UMC. First, it checks the boundary

condition once per every candidate (not for every pixel).

Second, it does not require any additional memory to store

padded area since all SAD computation in the padded area

comes from reused result.

7. REFERENCES

[1] “Information Technology – Coding of Audio-Visual

Objects – Part 10: Advanced Video Coding,” ISO/IEC

International Standard 14496-10, June 2003.

[2] ITU-T Recommendation H.263, “Video Coding for Low

Bit Rate Communication,” Jan. 1998.

[3] ISO/IEC JTC1, 2000, “Coding of audio-visual objects –

Part 2: Visual,” ISO/IEC 14496-2, Feb. 2000.

[4] “VC-1 Compressed Video Bitstream Format and

Decoding Process,” SMPTE 421M-2006, Apr. 2006.

[5] “Video Acceleration API Software Developer’s Guide,”

White Paper for the Intel 2700G Multimedia Accerelator,

Intel, Jan. 2005.

I 1008

