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ABSTRACT 

This paper proposes an implementation method to reduce 

complexity of motion estimation in the padded areas for 

unrestricted motion compensation. The proposed method 

avoids repeating the same calculation of motion estimation 

cost in the padded areas with identical search outcome as the 

conventional motion estimation. The savings realized in this 

method depends only on the block size, image size, and the 

search range. The proposed method can be applied to 

several video compression standards such as H. 263, and 

H.264. 

Index Terms— Video codecs, Video coding, Motion 

compensation, Standards

1. INTRODUCTION 

Motion Estimation (ME) is widely used in video 

compression algorithms. ME is a computationally intensive 

process for video encoder, especially for the recently 

approved H.264 [1]. H.264 allows several flexibilities 

(variable block size, multiple references, and unrestricted 

motion compensation) in temporal prediction process which 

helps improve the coding efficiency but adds considerable 

complexity to the overall process. This paper proposes an 

efficient method to reduce complexity of full search ME in 

the padded area. By exploiting the definition of the padding 

process, the proposed method reuses partial ME cost results 

in calculating the final ME cost in the padded area without 

any loss in coding efficiency. 

2. UNRESTRICTED MOTION COMPENSATION 

Unrestricted Motion Compensation (UMC) was first 

introduced in H.263 standard [2], and it has since been an 

integral part of all subsequent video coding standards (e.g., 

MPEG-4 part 2 [3], H.264 [1], VC-1 [4]). UMC allows the 

encoder to select motion vector (MV) pointing outside the 

boundary of the reference picture. This feature is useful 

when coding an object that is moving in and out of the 

picture. Video coding standard has to define the intensity 

value of a pixel outside the picture so that it is identical for 

both encoder and decoder to maintain synchronization of the 

reconstruction outputs. 

In general, padding is used to determine the pixel values 

outside the reference picture. In the padding process, the 

value of a pixel on the boundary of the reference picture is 

repeated for all the pixels outside the boundary along either 

the vertical or horizontal direction. Reference picture is 

padded so that it is large enough to cover all possible MVs. 

There are several methods to store the padded area in the 

reference buffer. 

Another method for ME outside the reference picture is 

to clip the motion vector [5]. Since the pixel value in the 

padded area is the same as the value of the pixel on the 

boundary, ME uses that pixel value to determine matching 

cost instead of using the actual out-of-bound pixel.  

With either of the above two methods, the same ME 

process (e.g., full search, fast search) inside the reference 

picture can be extended into the padded area. However, this 

simple extension approach is inefficient as it wastes too 

many computational cycles in repeating the same 

calculations over the padded area. The main computational 

block in ME process is the calculation of the difference 

between the current block and a candidate prediction block 

pointed by a motion vector, for example, the sum of absolute 

difference (SAD). 

This paper proposes a method that reduces complexity 

of ME in the padded area by reusing some partial calculation 

outputs in subsequent operations. The proposed method 

exploits the fact that the same operations between pixels in 

the current block and pixels in the padded area occur 

repeatedly. These calculation results can be stored and 

reused to eliminate repeating of the same operations in the 

future. The following sections describe the method to utilize 

these partial results efficiently in the right, left, top, and 

bottom padded areas. 

3. THE PROPOSED METHOD 

Assume that the reference pictures are of size M×N pixels 

and the search window radius xW±  pixels horizontally and 

yW± pixels vertically with its center at ),( yx CC , as shown 

in Fig. 1. In the following explanation, SAD is used in 

measuring the ME cost and the raster scan is used in 

searching the best MV over the search window, that is, the 
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search window is traversed from left to right, and top to 

bottom. Given a block of m×n pixels at location (u,v), the 

corresponding SAD with an associated MV(x,y) is calculated 

as  
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Figure 1: Example of a ME in unrestricted MC mode 

(shaded area indicates padded area)  

3.1. Right padded area 

With a raster scan search pattern, the searching process 

crosses the right boundary of the reference picture from the 

picture area into the padded area. The SAD calculation for 

ME in the right padded area can be improved by reusing 

some partial results. Let ),( yxiΔ  be the sum of the absolute 

pixel differences in the vertical dimension, that is, 
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where Δi, i = 0,1,...,m-1 can be considered as partial ME 

costs. 

For a block of m×n pixels at location (u,v), the 

prediction block pointed by ),( yumMMV −− is the last 

candidate before the searching moving into the padded area. 

The SAD for ),( yxMV , umMx −−> , can be computed 

efficiently as follows: 

1. Set mm ='  and  0=Δ
2. Calculate the SAD with ),'( yumMMV −−  by 

∑
−

=
−−Δ+Δ=−−

1'

0

),'(),'(
m

i

i yumMyumMSAD

3. Set ),'(1' yumMm −−Δ+Δ=Δ − and 1'' −= mm

4. If 1'≥m , return to step (2), otherwise, continue to step 

(5). 

5. For all ),( yxMV  with uMx −≥ , Δ=),( yxSAD . 

The proposed method produces an identical result as the 

traditional method. It can work with any other cost functions 

(e.g., MSE, MAD) and with any block size (e.g., 4x4, 8x8, 

16x16). The proposed method can be summarized by the 

flowchart shown in Fig. 2. 

The savings realized in the right padded area in terms of 

number of pixel difference, S(Right), can be determined as 

follows: 

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block

Final result is the sum of the cost of the

remaining pixels and reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Compute cost function of the pixels on

the boundary and add to the reuse

result

Figure 2: Flowchart for right padded area 
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3.2. Left padded area 

For the padded area on the left, in a raster scan fashion, the 

ME process crosses the left boundary of reference picture 

from the padded area into the picture area. Since the search 

pattern (raster scan) encounters the padded area first, it acts 

in an opposite manner compared to ME in right padded area. 

The proposed method for the left padded area hence works 

in an opposite way. That is, for left padded area, partial ME 

cost is subtracted as the search traverses into reference 

picture area. 

For a block of m×n pixels at location (u,v), all 

),( yxMV  pointing outside the reference picture with 

1)( ++−≤ mux have the same SAD value. The SAD for 

),( yxMV with 1)( ++−> mux  can be calculated as 

follows. 
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1. Set mm ='  and ∑
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2. For all ),( yxMV  with 1)( ++−≤ mux , 

Δ=),( yxSAD . 

3. Set 1'' −= mm  and  ),1)((1' ymum +′+−Δ−Δ=Δ − . 

4. Calculate the SAD with ),1)'(( ymuMV ++−  by 

∑
−

=
++−Δ+Δ=++−

1

'

),1)'((),1)'((
m

mi

i ymuymuSAD   

5. If 1'>m , return to step (3), otherwise, stop. 

Notice that the partial ME cost is first subtracted at position 

(-(u+m)+1,y). This position is where the candidate block 

first moves inside the picture boundary (i.e. its rightmost 

pixel is at (0,y) position). Compared to the algorithm for the 

right padded area, the order of the operation for the left 

padded area is reversed, i.e., the SAD of the entire block is 

computed first (step 1) and then partial ME cost is iteratively 

subtracted (step 3). Fig. 3 shows the flowchart of the 

modified algorithm for the left padded area. 

Figure 3: Flowchart for left padded area 

The savings realized in the left padded area in terms of 

number of pixel difference, S(Left), can be determined as 

follows: 
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3.3. Top and bottom padded areas 

With a raster scan manner, ME for the top and bottom 

padded areas has one major difference from the left and 

right padded areas in that the partial ME cost are different as 

the search traverses from one pixel to the next in the padded 

area of the same row. As a result, searching through the top 

and bottom padded areas in raster scan order does not allow 

the partial ME cost to be reused and hence requires the same 

amount of computation as working inside the picture 

boundary. 

One way to maintain the effectiveness of the proposed 

method is to transpose both the current block and the 

associated search area when traversing in the top and bottom 

padded areas. In the transposed domain, searching in the top 

and bottom padded areas behaves the same as the left and 

right padded areas so that UMC in the top and bottom 

padded areas can be done efficiently by reusing partial ME 

cost results as described in the previous sections.  

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block (position at

the k-th column)

Final result is the sum of the cost of the

remaining pixels and the k-th column

reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Compute cost function of the pixels on

the boundary and add to the k-th

column reuse result

Figure 4: Flowchart for top padded area 

Portion of a candidate block is

on the boundary

Compute cost function of the remaining

pixels in a candidate block (position at

the k-th column)

Compute cost function of the pixels on

the boundary and subtract it from the k-

th column reuse result

Compute cost

function of all

pixels in a

candidate block as

normal

No

Yes

Final result of the k-th column is the

sum of the cost of the remaining pixels

and reuse result of the k-th column

Figure 5: Flowchart for bottom padded area 

Another solution for UMC in the top and bottom 

padded areas is to store all partial ME costs of the entire row 

in the search window. As the search traverse through the 

padded area, the partial ME costs in the same column 
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position are updated. This solution works without any 

change in the search pattern. Figures 4 and 5 show the 

flowchart of this solution for the top and bottom padded 

areas, respectively. The savings realized for top and bottom 

padded areas can be derived in the same way as for left and 

right padded areas and will be omitted in this paper due to 

the space limitation. 

3.4. Field picture 

In H.264, the padding process for field and frame 

macroblock (MB) is slightly different for the top and the 

bottom padded areas. For field MB, the top and the bottom 

padded areas are formed by repeating two boundary lines 

(one is in top field and the other in bottom field)

alternatively. Hence, it is necessary to modify the proposed 

method in the top and the bottom areas for field MB. 

Specifically, two sets of partial ME costs need to be stored 

and reused in calculating the final ME costs, one is for the 

top field and the other for the bottom field.   

4. IMPLEMENTATION 

This section describes an implementation of the proposed 

algorithm in video encoder. One main difficulty is the region 

where redundancy can be exploited through both horizontal 

(right or left) and vertical (top or bottom) padded directions. 

To handle this issue, we divide the search window into three 

parts: top, middle, and bottom region. Top region covers all 

candidates in search window such that their vertical 

coordinates locate beyond the upper boundary of the 

reference picture. Similarly, bottom region includes all 

candidates in search window such that their vertical 

coordinates locate beyond the lower boundary of the 

reference picture. The remaining candidates belong to the 

middle region.  

Redundancy in the middle region can be handled by the 

same procedure described in sections 3.1 and 3.2. Top and 

bottom regions are handled differently to exploit redundancy 

without sacrificing too much complexity. Transposed 

version described in section 3.3 is used in top and bottom 

regions. 

5. EXPERIMENTAL RESULTS 

We implemented two efficient ME algorithms to determine 

their performance. The first algorithm (METHOD 1) uses 

the idea illustrated in Sections 3.1 and 3.2. The second 

algorithm (METHOD 2) uses the idea from Section 4. ME 

using clipping method similar to [5] is also implemented to 

serve as a benchmark. In these simulations, SAD is used as 

the matching cost and search center is aligned with the 

coordinate of the current block. Table 1 demonstrates the 

savings of METHOD 1 and METHOD 2 in terms of relative 

reduction in pixel difference operations over the benchmark. 

According to the simulation results, we can see that 

METHOD 2 achieves the most savings. The result 

demonstrates the impact of redundancy that can be exploited 

jointly in both horizontal and vertical padded areas. 

Moreover, it shows that the savings increases as the search 

range increases but decreases as the picture size increases, 

which reflects the ratio of the search area outside the 

reference picture to the picture size. The MV outputs of both 

methods are identical to those of the benchmark. 

TABLE 1: SAVINGS IN PIXEL DIFFERENCE 

OPERATIONS 

SEARCH RANGE METHOD PICTURE 

SIZE 64X64 32X32 16X16 

SD 6.7% 3.4% 1.7% 

CIF 11.2% 5.6% 2.9% 

METHOD

1 

QCIF 22.4% 11.3% 5.7% 

SD 10.9% 5.5% 2.8% 

CIF 19.2% 9.9% 5.1% 

METHOD

2 

QCIF 36.0% 19.2% 10.0% 

6. CONCLUSION 

This paper describes an efficient method for UMC in the 

padded area using the reused results. The proposed method 

significantly reduces the computation cost without any loss 

in search quality. It does not incur significant overhead. 

Moreover, it maintains the best practice of the 

straightforward UMC. First, it checks the boundary 

condition once per every candidate (not for every pixel). 

Second, it does not require any additional memory to store 

padded area since all SAD computation in the padded area 

comes from reused result. 
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