
A ROBUST METHOD OF DETERMINING CONTEXT-CODER SOLUTIONS FOR
ENCODING AFFINE MOTION VECTORS

Roman C. Kordasiewicz†, Michael D. Gallant‡, and Shahram Shirani†

ABSTRACT

The translational motion model can’t effectively model com-

plex motion such as scaling, shearing and rotation. That is

why more complex motion models like the affine model have

been proposed. However, affine motion vectors (AMV)s are

more complicated to encode than the translational motion vec-

tors. In this paper we propose several context-coder solutions

based on our novel context type limited exhaustive search

simulation. As a result the average compression gains of

7.9%, 5.9%, and 9.6%, for Mobile, Cost Guard, and

Modified Mobile video sequences were respectively re-

alized, with peek compression improvements of 13%. In ad-

dition, our simulation is described and successfully compared

with [1].

Index Terms— context determination, affine motion vec-

tors, CABAC, VLC, arithmetic coding,

1. INTRODUCTION

In the search for more efficient ways of encoding video se-

quences, the affine motion model has been used to very accu-

rately model complex motion. There are however two prob-

lems with affine motion vectors (AMV)s. First, they are dif-

ficult to compute, however this is slowly offset by constantly

increasing computational capabilities. Second, the AMVs are

difficult to compress, taking up a significant portion of the

compressed video bit rate. To address this issue, we propose

in this paper a method for computing context-coder solutions

for compressing AMVs.

Affine motion vectors are a subset of polynomial motion

vectors [2]. Each motion vector consists of six parameters

�v = (v1, v2, v3, v4, v5, v6). It has been shown by [3] that or-

thogonalization makes the polynomial coefficients more ro-

bust to quantization. This was analyzed further in [4]. Or-

thogonalized affine motion vectors (AMV) have been also

proven in [2, 5, 4] and in the proposed coder [6], and they are

the focus of this paper. Typically, AMVs are coded as three

symbols: the non-zero pattern, the amplitudes, and the signs.

†Roman C. Kordasiewicz and Dr. Shahram Shirani are with Department

of Electrical and Computer Engineering, ITB A320, McMaster University,

1280 Main Street West, Hamilton, Ontario L8S-4K1, their respective emails

are kordasi@grads.ece.mcmaster.ca , shirani@mail.ece.mcmaster.ca

‡Dr. Michael D. Gallant is with LSI Logic Corporation, 97 Randall

Drive, Waterloo, Ontario N2V-1C5, his email is mgallant@lsi.com

For example if �v = (5, 0, 0, 7, 0,−1) then the non-zero pat-

tern is (1, 0, 0, 1, 0, 1), the amplitudes are 5, 7, 1, and the signs

are +,+,-. In MVC [6] and in related work, all of these sym-

bols for all of the AMVs are then coded using variable length

code (VLC) tables, without leveraging on the correlations be-

tween AMVs. One way of exploiting these correlations is

to consider the contexts in which AMVs occur. Since con-

text information is also available to the decoder no extra data

should be transmitted (also called backward context-adaptive

[7]). The context types used in this paper for AMVs are:

Motion Vector (MV) Type: There are two basic types of

motion vectors. Type-I, are motion vectors which identify

directly the motion between two frames. Type-II, are refine-

ment motion vectors which identify the difference between

the predicted motion vector and the current motion vector.

Quantization Step Size (QP): In this paper the most com-

mon uniform scalar quantization is considered with step sizes

ranging from 2 to 8 as in [6].

Region Size: The orthogonalized AMV are orthogonal-

ized with respect to the region size. Thus two region sizes

will be considered 8× 8 and 16× 16.

Position Within the Vector: There are six coefficients in

an AMV and potentially each of these could be coded with a

customized coder (or coders).

Neighbour Information: Similarly to the reasoning in

[8], the motion within a macroblock is highly correlated to

motion in its neighbours.

Of these 5 context types, only “Neighbour Information” con-

text type falls into the traditional definition of a context, as

traditionally “The principle of context adaptive coding is to

attempt to model the conditional probability of symbols based

on their surrounding neighbourhood”[7]. However in this pa-

per the concept of a context is extended to encompass all read-

ily identifiable conditions on an AMV, based on the neigh-

bourhood, the coder state, the motion vector type, and the

coefficient type. This extension was deemed necessary such

that as many as possible correlations within the AMV can be

examined. Throughout this paper, backward context-adaptive

methods are used since no additional transmission and coding

overhead is desirable. The three symbol encoding approach

(pattern, amplitude, and sign) was found to be particularly ef-

ficient way of encoding AMVs. We then extend this approach

through the use of various context adaptive coders and other

improvements, resulting in context-coder solutions.

I ­ 10011­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

2. FINDING BEST CONTEXT-CODER
COMBINATIONS

Since AMVs are coded as three different symbols, three dif-

ferent context-coder solutions will be required. In order to

find the best solution we begin by analyzing the encoding of

non zero amplitude symbols as an illustration of our approach.

To encode the AMV amplitudes using contexts, the con-

text types defined in the previous section are used. How-

ever, “Neighbour Information” context type is represented by

a neighbour context index which can be derived with the fol-

lowing algorithm:

1. For AMV i find AMVs from MBs above and to the left.

Call this set Si, and let the size of this set to be N . N

is variable since some MBs may not have AMVs and

some MBs may be split into smaller regions.

2. Find the summation of the AMVs in Si. The result is a

vector �ui =
∑

�v∈Si
�v.

3. For jth AMV coefficient of MB i denoted as v(i,j), find

the neighbour context index denoted as c(i,j) according

to:

c(i,j) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if u(i,j) < 2N ;
1 else if u(i,j) < 8N ;
2 else if u(i,j) < 16N ;
3 otherwise;

(1)

As a result, the amplitude neighbour context index is calcu-

lated by doing few simple additions and shift operations.

In addition to context types, it is possible to encode the

various symbols with different entropy coding methods. As

part of the study performed in this paper, several coders are

considered to give an understanding between coder complex-

ity and possible compression gain. Before any analysis is per-

formed we introduce the types of coders considered in exper-

iments, and these are:

(A) Original MVC: This is the original VLC coder used

by [6]. This coder uses the same VLC table irrespective of

the context.

(B) Modified MVC - This coder is similar to [6]. How-

ever, a context optimal VLC tree is first determined using

Huffman codes, and then the symbols are encoded using the

optimal VLC tree.

(C) Modified CABAC - This coder is similar to CABAC

[8], with the exception that various possibilities for S and k
are explored for a given context. S controls the width of the

concatenated unary code, and k specifies the k-th order Exp-

Golomb code, and both are used in the binarization process.

The final value of S and k is chosen to maximize compression

for a given context.

When one considers several coder types and the numer-

ous possibilities for the different binarizations (S and k val-

ues), then the number of possible coders is very large. In ad-

dition, when one considers all of the possible context types,

then the search space for the best coder and context type com-

bination is very large. An additional consideration when en-

coding AMV besides compression efficiency, is coder com-

plexity and the memory footprint. With an already complex

and time consuming affine motion estimation, it is desirable

to keep the AMV encoding as simple as possible. Thus, in the

final solution a few context types should be chosen to keep the

memory footprint small, and a relatively fast coder should be

used.

To study the compression tradeoffs between various coder

and context types a large sample of AMV amplitudes was

generated along with side information for context determina-

tion. Almost 800000 amplitudes were gathered by encoding

the popular QCIF video sequences (Car-Phone, Foreman,

News, Akiyo, Trevor, Mother and Daughter,
Hall Objects, Clare) with the MVC coder. Once the

amplitudes were gathered, a limited-exhaustive search simu-

lation was performed to find the best context type and coder

combination. This search may be best described with the fol-

lowing pseudo-code:
For i = 0 to 5; (i represents the number of enabled context

types)

• For j = 1 to Ci
5; (go through all of the possible con-

text type combinations of length i, where Ci
5 is the symbol

for all combinations of length i out of 5)

1. For n = 1 to # of contexts; (go through all

of the contexts for all of the enabled context types at the

j th iteration)

(a) Find the VLC table for Modified MVC coder for

the nth context

(b) Encode the symbols using Modified MVC and us-

ing the new VLC table

(c) For S = 0 to 12∗

i. For k = 2 to 8∗

A. Find CABAC parameters for nth context

and S,k binarization

B. Modified CABAC with the new parame-

ters was used to encode the symbols

C. Record the best compression results

(d) Record best results for all coders at nth context

2. Record the results for the best context type combination

of length i

One modification to the above algorithm can be made,

if one desired to test all context-coder combinations (fully-

exhaustive), instead of testing all of the context type-coder
combinations (limited-exhaustive). The modification would

be to iterate through the number of enabled contexts in the

outer loop (ie. i = 1 to 672 §for amplitude contexts, and thus j

would go from 1 to Ci
672). However, this modification would

∗The ranges for S and k were determined experimentally such that the best

solutions never fall on these boundaries.
§672 = 2 MV types · 7 QP levels · 2 Region Sizes · 6 Positions within a

vector · 4 Neighbour contexts

I ­ 1002

Table 1. Context types VS. coders for amplitude symbols
% bit Enabled Context Types

Coder rate MV QP Region Posi- Neigh-

reduction Type Size tion bour

(B) 5.38 Off Off Off On Off

(C) 7.68 Off Off Off On Off

(B) 6.70 On Off Off On Off

(C) 10.38 On Off Off On Off

(B) 7.87 On Off Off On On

(C) 10.90 On Off On On Off

(B) 8.33 On On Off On On

(C) 11.00 On Off On On On

greatly increase the complexity of this algorithm without sig-

nificantly better results. There are two advantages in using

our limited search method. First, it is much quicker to iterate

through context types, than contexts in the outer loop. Sec-

ond, actual entropy coders are used in the inner loop to find

their relative performance.

The results of the limited search simulation are shown in

Table 1¶. In this table we compare the % bit rate reduction

after encoding a large set of AMV amplitude symbols by two

coders, Modified MVC (B) and Modified CABAC (C) rela-

tive to the Original MVC (A) coder. As one moves down the

rows more context types are enabled. In the “Enabled Context

Types” columns we show the contexts that yielded the best

performance for a specific coder given a limited number of

enabled contexts. For example, in the first two rows only one

context type was allowed (i = 1), here we see that for both

coders the most gain was obtained by using the “Position”

context type. When # context types was increased to 3 the

Modified CABAC gets 10.9% compression gain, compared

to about 7.87% gain the Modified VLC gets. However, the 3

context types that Modified CABAC uses have only 24 con-

texts (“MV Type”, “Region Size” and “Position”), whereas

the best 3 context types that the Modified VLC uses have 48

contexts (“MV Type”, “Position” and “Neighbour”). Thus,

the memory requirements for Modified VLC would be signif-

icantly larger than the Modified CABAC, and it would still

have worse performance.

In summary, for encoding amplitudes, using three context

types may be sufficient, since this yields most of the com-

pression gain. The choice of coder however, is more uncer-

tain since it depends on the amount of hardware available, and

on the compression algorithm (R-D optimized or not). Since

Modified CABAC has the best performance and a smaller

memory requirement than comparable Modified VLC coder,

we can choose it and its three context types “MV Type”, “Re-

gion Size” and “Position” as the context-coder combination

¶The results when i = 0 (all AMVs treated as a single context) are omit-

ted since they are trivial. The results for the case when all context types are

enabled (i = 5) are also omitted from the table since the compression gain

of all the coders either remains the same or it actually drops, as it is expected

with this many contexts[1].

for the amplitude symbols.

Similar simulation and reasoning can be used in determin-

ing context-coder combinations for the pattern and sign sym-

bols. In the case of the pattern symbols which are highly ran-

dom using many contexts and complex coders did not prove

to greatly improve compression performance. A reasonable

compromise for the pattern symbols is to use Modified VLC

coder with two context types; “MV Type” and “Neighbour”,

which results in a fast implementation and a relatively small

memory footprint. This combination yields a 2.3% compres-

sion gain for the pattern symbols over the Original MVC (A)

coder. For the sign symbols, the original MVC coder used one

bit per non-zero coefficient to indicate the sign (the simplest

VLC coding). However, this type of encoding is extremely

efficient since it requires just a few simple arithmetic oper-

ations. It is quite suitable for signs, since the probability of

either - or + is almost equal. To achieve compression (less

than 1 bit per sign) only arithmetic coders can be considered.

We selected two context types “MV Type” and “Position” (12

contexts) and Modified CABAC to compress sign bits, which

achieves a 3.83% compression gain. In the end we have three

context-coder solutions for the three different AMV symbols.

3. RESULTS

In order to verify the three context-coder solutions, they were

implemented in the MVC coder, and were tested on four dif-

ferent QCIF video sequences over a range of bit rates. These

video sequences were; Mobile, Cost Guard, Modified
Mobile. The Modified Mobile video sequence was

generated from the original Mobile video sequence since

no other suitable sequence was found that had visible but nat-

ural amounts of both scaling and rotation. Overall, our new

coders had a very insignificant impact on the encoding time

for these video sequences. For Mobile, Cost Guard, and

Modified Mobile video sequences the encoding times

grew by 2.8%, 1.8%, and 0.2% respectively on average. How-

ever, the AMV compression increased by 7.9%, 5.9%, and

9.6% respectively on average. In fact, with more complex

video sequences, where more AMV parameters are sent, the

compression gain increases. For example, the maximum com-

pression gain of 11.3% and 13.3% was obtained for Mobile
and Modified Mobile respectively.

4. COMPARISON

A significant contribution of this paper involves choosing con-

texts for AMV symbols. In most context-based coders, con-

texts are chosen based on the tradeoff between complexity

(computation and memory) and coding gain. In this paper,

contexts were chosen based on analyzing this tradeoff with

the aid of the limited search simulation. There are other meth-

ods of partitioning the context space [9, 10, 1]. These methods

are best described as context quantizer design. Using all five

I ­ 1003

context types for encoding amplitude information results in

672 contexts (context space). An optimal split using a sub-

set of the entire context space can be calculated using the

algorithms described in [1]. The optimality of this solution

is based on the distance measure between two histograms or

two probability mass functions. This distance measure known

as the Kullback Leibler distance, also known as Relative En-

tropy. In order to compare the partitioning method presented

in [1] to our approach, the algorithm in [1] was implemented

and used to quantize amplitude contexts. Once the best quan-

tization was computed by using [1], coders for each quantized

context were determined using a simulation. The total num-

ber of quantized context levels tried were 6 and 24, since this

corresponds to using 1, and 3 context types in Table 1. The

average number of bits required to encode an amplitude sym-

bol using this new method for 6 contexts was 3% better then

our context-coder result. When the number of contexts is in-

creased to 24, the coding gain due to using quantized contexts

drops to 0.1%.

Therefore, it is possible to achieve additional coding gain

by using context quantization. However, this advantage is

only significant when small number of quantized contexts is

used (4 to 8 contexts). There are however three disadvan-

tages of this method. First, a complicated context has to be

computed, and this requires the use of neighbour informa-

tion which is not always the case with our approach. Second,

the potentially large context derived with [1] has to be quan-

tized (mapped) to a small set of contexts. In practice when

one uses [1] there is no simple mapping between the original

and quantized contexts, and a lookup table is necessary. This

lookup table can be quite large, for example in the case of

amplitude symbols it is 672 deep, and it is 3 or 5 bits wide

for 6 and 24 contexts respectively. Overall since 24 contexts

are suggested as the final solution in Section 2, the advan-

tage of deriving these 24 context partitions using [1] would

yield only an additional 0.1% compression gain, which does

not warrant the additional context computation followed by

a large lookup table. There is a third disadvantage of using

[1], and it is the distance measure used in the algorithm. This

distance measure is used as a model and it does not always

best describe real coders which may be limited by coder spe-

cific constraints. Thus the distance measure does not take into

account: the complexity of context selection, the coder com-

plexity, and memory overhead.

5. CONCLUSION

Affine motion vectors, and in particular their orthogonalized

versions are an integral part of advanced coders which try to

efficiently capture complex motion. This is mainly due to

the fact that traditional translational motion vectors cannot

effectively express scaling, shearing, and rotation. However

AMVs are difficult to compress and can take up a significant

portion of the overall bit rate, that is why their efficient cod-

ing needs to be explored. In this paper we propose context-

coder combinations to best encode AMVs while taking into

account the compression performance, coder complexity, and

memory foot print. As a result AMV compression gains of

up to 13% were easily realized. In addition, the context-coder

solutions were developed using our proposed limited search

simulation, which greatly simplifies the task of choosing the

context-coder solutions. This approach is further discussed

and effectively compared to work in [1].

6. REFERENCES

[1] J. Vaisey and Jin Tong, “An iterative algorithm for con-

text selection in adaptive entropy coders,” International
Conference on Image Processing, vol. 3, June 2002.

[2] Marta Karczewicz, Jacek Nieweglowski, and Petri

Haavisto, “Video coding using motion compensation

with polynomial motion vector fields,” Signal Process-
ing: Image Communiation, vol. 10, pp. 63 – 91, 1997.

[3] A. Gersho and R. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Norwell,

MA, 1995.

[4] Roman C. Kordasiewicz, Michael D. Gallant, and

Shahram Shirani, “Modelling quantization of affine mo-

tion vector coefficients,” Accepted for publication in the
: IEEE Transactions on Circuits and Systems For Video
Technology, February 2006.

[5] Thomas Wiegand, Eckehard Steinbach, and Bernd

Girod, “Affine multipicture motion-compensated pre-

diction,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 15, pp. 197 – 209, February

2005.

[6] Nokia Inc. - Nokia Research Center, “MVC

coder/decoder submitted to ITU-T,” 2000.

[7] Wenqing Jiang and A. Ortega, “Forward/backward

adaptive context selection with applications to motion

vector field encoding,” International Conference on Im-
age Processing, vol. 2, Octomber 1997.

[8] T. Wiegand and G. Sullivan, “Draft ITU-T recom-

mendation and final draft international standard of joint

video specification,” 2003.

[9] S. Forchhammer, Wu Xiaolin, and J.D. Andersen, “Op-

timal context quantization in lossless compression of

image data sequences,” Image Processing, IEEE Trans-
actions on, vol. 13, pp. 509 – 517, 2004.

[10] Xiaolin Wu, P.A. Chou, and Xiaohui Xue, “Minimum

conditional entropy context quantization,” Information
Theory, 2000. Proceedings. IEEE International Sympo-
sium on, pp. 43–, 2000.

I ­ 1004

