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ABSTRACT

This paper proposes a novel SNR scalable coding method 

with the support of generalized principle component 

analysis (GPCA). This method encodes the low-pass and 

high-pass pictures generated by the MCTF decomposition 

with a hybrid linear model instead of traditional block-based 

DCT transform. GPCA is a powerful tool to identify the 

hybrid linear model in the textures, which segment the 

texture into heterogeneous regions, and then encode each 

region with PCA method. By keeping various proportions 

of PCA coefficients, and altering the quantization step sizes 

for different layers, a better scalable coding result can be 

achieved. 

Index Terms— Video coding, scalability, texture 

coding, GPCA, hybrid linear model

1. INTRODUCTION 

Scalable video coding is to encode a video sequence into a 

stream with multiple embedded sub-streams, with each of 

the sub-streams being a compression of the original video 

sequence at a particular resolution. Such a stream can 

accommodate various network bandwidths and different 

user requirements. Undoubtedly this technology is very 

useful for online video services.  

Most of the recent industrial video coding standards 

include scalable coding methods. The fine granularity 

scalability (FGS) approach included in ISO/IEC MPEG4 

standard provides SNR (Signal to Noise Rate, or quality) 

scalability by re-quantizing coefficients of the discrete 

cosine transform (DCT) [1]. In January 2005, MPEG and 

ITU-T decided to include the scalable extension of 

H.264/AVC [2][3] as an amendment of the standard, which 

has achieved the best ever compression efficiency. The joint 

video team (JVT) of ITU-T is still working on the project.  

The scalable extension of H.264/AVC uses motion-

compensated temporal filtering (MCTF) instead of the 

closed-loop motion compensated prediction structure to 

implement temporal scalability.  For SNR scalability, it uses 

a similar FGS approach as in MPEG4, except that the high 

quality references are employed to improve the coding 

efficiency.

The above mentioned SNR scalability implementations 

are all constructed on block-based DCT transform. However, 

recent studies of GPCA in image processing [4] gave us the 

inspiration that a global sparse representation for the 

pictures in scalable video coding might be a better choice. 

The reason is that GPCA can exploit the texture differences 

in various regions of a picture, and encode each texture 

separately. This feature is not only useful in improving the 

coding efficiency, but may also be promising in enabling the 

end user to access particular sub-streams of a video 

sequence that represents a certain texture area. Therefore we 

come up with a GPCA-based SNR scalability scheme. This 

scheme is designed on the MCTF coding structure. A video 

sequence is turned into a series of low-pass and high-pass 

pictures after MCTF. These pictures are processed by 

GPCA to be segmented into a variety of regions, each of 

which can be well represented with one parametric modal. 

Then these regions are separately coded by a set of PCA 

bases and coefficients. By discarding insignificant bases and 

coefficients, we get a coarse representation of the original 

picture. The discarded bases and coefficients can be used to 

form different enhancement layers to refine the quality of 

the decoded video. This scheme provides SNR scalability in 

fairly fine granularity. Experiments show that this approach 

typically gets a better PSNR than DCT based method for 

most test sequences. 

2. SCALABLE TEXTURE CODING WITH GPCA 

2.1. Overview

The proposed scalable video coding scheme achieves 

temporal and spatial scalability using the current scalable 

extension of H.264/AVC test model JSVM 3.0 [5]. For SNR 

scalability we use a hybrid linear model representation in 

place of DCT transform to encode the high-pass and low-

pass pictures generated by MCTF, which we call textures. 

The framework is shown in Figure 1. 

2.2. Spatial Scalability 

As shown in Figure 1, the video source is decimated by a 

factor of 2, both vertically and horizontally, to obtain a 

spatial base layer. The two spatial layers are then separately 
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encoded with the same procedure, except that four kinds of 

inter-layer prediction are used between them. 

Figure 1. Overall framework of the GPCA-based scalable 

texture video coding scheme.  

1. Scale up the motion vectors of the base layer to 

predict the motion vectors of the enhancement layer.  

2. Up-sample the macro-blocks of the base layer to 

predict the macro-blocks of the enhancement layer. 

3. Up-sample the textures of the base layer to predict 

the textures of the enhancement layer.  

4. Scale up the grouping (segmentation of vectors in 

the GPCA method) of the base layer to predict the grouping 

of the enhancement layer.  

The first three kinds of prediction are from the JSVM 

test model [5]. The forth one is for the GPCA coding 

method, which will be described in the next section. Of 

course all the four kinds of inter-layer prediction can be 

switched on and off adaptively.  

2.3. Temporal Scalability  

For temporal scalability, our framework employs the MCTF 

extension of H.264/AVC. MCTF is a wavelet lifting method 

which decomposes a video sequence into several sets of 

low-pass and high-pass pictures. The low-pass pictures form 

a temporal base layer, while each set of high-pass pictures 

form a temporal enhancement layer. For the details of 

MCTF, please refer to [6]. 

2.4. SNR Scalability with GPCA

The proposed SNR scalability includes coarse granularity 

which is realized through re-quantization, and fine 

granularity which is realized by discarding GPCA data 

components. In the scalable extension of H.264/AVC, the 

textures, i.e. high-pass and low-pass pictures, are coded 

using DCT based integer transform. DCT converts a picture 

into the frequency domain, and represents it with a 

superstition of basic functions. This set of basic functions is 

invariant for every picture. This method certainly does not 

take account of the fact that an image typically contains 

regions of different textures.  A recent work by René Vidal, 

Yi Ma et al. [7] called GPCA, can simultaneously segment 

an image into different regions and approximate each region 

with a linear model. This method, also called hybrid linear 

model representation of images, is introduced into video 

texture coding in our work. 

Hybrid Linear Model for Texture Encoding 

To apply GPCA on video texture coding, we first 

divide each texture picture into l blocks. Assume that 

every pixel has 3 color components: luma, Cb and Cr. For 

each block, the luma values of every pixel are stacked into a 

m

D  dimensional vector
Dv ¡ , where . Likewise, 

Cb and Cr values of each block are also stacked into

D l m

D

dimensional vectors. Then all the vectors reside in a D

dimensional space D¡ . Figure 2 shows the construction 

process of vectors in a YUV420 format video frame. For a 

picture with width W and height H , the total number of 

luma vectors extracted is . As the 

number of Cb samples is 1/4 the number of luma samples, 

the number of Cb vectors is . The same condition holds 

for Cr vectors. For other strategies of mapping frames to 

vector spaces, please refer to [8]. 

( ) /(N W H l m)

/ 4N

Figure 2. Converting a texture frame into a set of vectors, 

which are then segmented and estimated by GPCA.  

Now given a set of vectors, GPCA will identify 

heterogeneous groups and approximate each group with a 

linear model. Assume that the luma vectors can be 

segmented into n groups . Every group forms a 

subspace of the 

1|ni iG

iS D dimensional ambient space D¡ . For 

each , a basis can be found. Then a given 

vector

iS 0{ | }ik

i ij jB b

iv G can be represented as 0
ik

j j ija b , where 
ja are

the coefficients.

A more detailed description of the algorithm is 

presented below. At the beginning, an initial pass of PCA is 

performed to reduce the dimension of the ambient space. 

The vector set 1{ }D N

iv i¡ is subtracted by the mean 

vector 1
1 N

i iv
N

v , resulting in a vector set which has a 

zero mean. The set 1{ }N

i iV v v can be represented by its 
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SVD decomposition , and the first columns of 

become the projection base

TV USV d

U D dP ¡ . The reduced 

dimension  and the PCA coefficients are computed as 

follows: 

d C
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min ( )
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D

D

ii kk D
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S diagonal
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C S d d V d
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L

                                   (1) 

Now the original vectors are represented by the set of 

coefficients , a second pass of GPCA is performed on .

is further segmented into n  groups 

C C

C 1{ }id n n

i ig ¡ ,

where is the number of vectors that belong to group in ig .

Each group ig  is then represented by a set of 

bases isd d

ib ¡  , where isd  is the dimension of the 

subspace that ig belongs to, and a set of coefficients 

i isd n

iC ¡   similar to that in the first pass of PCA. Now a 

texture frame is converted to a set of coefficients:

{ }i i iFrame P C b meanVector meanVector  (2) 

The total number of coefficients for encoding the 

texture is:

1
( ( ) )

n

i ii
Count d D sd n d d D             (3) 

For more information on GPCA, please refer to [7]. 

Reordering of Data Elements 

Once the texture frame has been transformed into a set of 

bases and coefficients, we design a reordering procedure to 

organize these data elements into a suitable format for 

transmission.  

Here is a list of data elements obtained through GPCA 

encoding: P  (bases of the first pass PCA); M  (mean 

vectors of the first pass PCA);  (mean vectors of 

the groups in the second pass GPCA);

1|ni im

n 1|ni ib  (bases of 

the groups in the second pass GPCA); (coefficients

of the groups in the second pass GPCA). Note that the 

above data can all be divided into luma, Cb and Cr 

partitions. From the dimensions of these data elements, it is 

easy to see that 

n 1|ni iC

n

i isd n

iC ¡ account for a major proportion 

of the data.

In the above list, P , M and are indispensable and so 

are transmitted first. For and , we have the observation 

illustrated in Figure 3. In each color channel we get 2 

subspaces

im

ib iC

1g and 2g . Take the 1g subspace in the luma 

channel for example, the first basis vector and the first 

coefficient vector are both shown in grey color. The 

dimension of 1g is 1sd , so there are 1sd basis vectors. There 

are vectors in this subspace, so there are columns of 

coefficients. At the reconstruction stage, the first row of the 

coefficients in the figure will multiply the first basis vector. 

So if only the first basis vector (shown by the grey bar) is 

lost, the first row of coefficients is useless. This condition 

holds for all other rows. Note another fact that the bases are 

ordered by their significance. So the first basis vector is 

most significant. Thus, we transmit the bases and 

coefficients in the order shown by the dotted arrow line and 

the numbers on the left. The first row of each subspace will 

be coded first, then the second row, and so on so forth.

1n 1n

Figure 3.  Reordering of data elements in order to 

implement fine granularity scalability.  

By reordering the data components obtained by GPCA 

coding, the bases and coefficients can be truncated at a wide 

range of points. If the data is truncated, some insignificant 

bases are discarded, or part of the coefficients for a basis 

vector is set to zero, which results in a degraded texture 

frame. In this way, we realized fine granularity scalability.

We didn’t use the H.264/AVC NAL unit syntax for the 

coding of GPCA bases and coefficients. Instead we defined 

a temporal data format. 

3. EXPERIMENTAL RESULTS 

We set up an experiment to evaluate the performance of 

our GPCA-based scalable texture video coding scheme. The 

experiment is done on the scalable H.264/AVC extension 

test model JSVM 3.0. We embed our GPCA image coding 

method into the test model to encode the high-pass and low-

pass pictures. The resulting bases and coefficients are 

reordered using the technique described in the last section 

and partially discarded to evaluate the fine granularity SNR 

scalability performance of this scheme.  

Figure 4 shows the comparison between GPCA-based 

SNR scalable coding and DCT-based SNR scalable coding.  

The curves demonstrate the average PSNR of the second 

layer for the video sequence “vectra”. The solid curve are 

obtained by using 4 4  block based DCT for texture coding. 

We can see that the average PSNR attained with GPCA 

method are generally better than that of DCT. Furthermore, 

when gradually truncating enhancement layer data elements, 

the curves of GPCA performance decline smoothly. This 

feature promises a smooth change of the video quality when 

the network transmission varies. The test sequence “vectra” 
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is one with dramatic background motion. We also tested our 

algorithm on other sequences, which got us very similar 

results.

In another case, we changed coding parameters to test 

the impact of inter-layer prediction on coding performance. 

Table 1 presents the results of several video sequences 

encoded with different options. We can see that both the 

inter layer prediction and grouping prediction cause minor 

PSNR loss. However this is acceptable for the considerable 

reduction of complexity. 

      option 

seq.
(1) (2) (3) (4)

vectra

Y:38.3915

U:43.0975

V:43.3396

Y:38.3922

U:43.1081

V:43.3554

Y:38.8399

U:43.2827

V:43.4470

Y:38.8442

U:43.3068

V:43.4731

foreman

Y:38.0424

U:42.2288

V:45.2592

Y:38.0428

U:42.2413

V:45.2604

Y:38.3435

U:42.9812

V:45.1166

Y:38.3489

U:42.9979

V:45.1162

news

Y:38.3670

U:41.4038

V:42.3655

Y:38.3682

U:41.4022

V:42.3620

Y:38.5663

U:41.5221

V:42.4022

Y:38.6053

U:41.5312

V:42.4251

football

Y:37.7125

U:42.5596

V:43.2864

Y:37.7235

U:42.5888

V:43.3186

Y:38.3423

U:42.7167

V:43.2687

Y:38.3544

U:42.7516

V:43.3065

stephan

Y:36.6015

U:39.9481

V:40.2245

Y:36.6012

U:39.9513

V:40.2351

Y:37.2878

U:40.5836

V:40.7578

Y:37.2893

U:40.5903

V:40.7653

Table 1: PSNR value of different video sequences encoded 

with different options. (1) both inter layer prediction and 

grouping prediction are on; (2) inter layer prediction is on 

while grouping prediction is off; (3) inter layer prediction is 

off while grouping prediction is on; (4) neither inter layer 

prediction nor grouping prediction is off. 

4. CONCLUSION 

We introduced hybrid linear model into the field of video

texture coding. By replacing DCT transform with GPCA 

segmentation and modeling, and by carefully reordering the 

bases and coefficients obtained by GPCA, a new SNR 

scalable coding scheme is proposed. Experiments show that 

this scalable coding approach gets comparable or better 

results than DCT based methods. The computational 

complexity problem has not been paid enough attention, but 

a grouping prediction method is raised to reduce the 

complexity of the algorithm. The segmentation and 

estimation ability of GPCA approach is very promising and 

may also have other applications in video coding. The

future work can be about network adaptation of the bit 

stream, or organizing different texture regions in separate 

layers to enable a new kind of scalability. 

Figure 4. Comparison of GPCA and DCT texture coding 

methods with the test sequence vectra.  
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