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ABSTRACT 

In this paper, we develop a new feature extraction and 
dimension reduction technique: 2-Dimensional Adaptive 
Discriminant Analysis (2DADA) based on 2DLDA and our 
proposed 2DBDA. It effectively exploits favorable 
attributes of both 2DBDA and 2DLDA and avoids their 
unfavorable ones. 2DADA can easily find an optimal 
discriminative subspace with adaptation to different sample 
distributions. It not only alleviates the problem of high 
dimensionality, but also enhances the classification 
performance in the subspace with KNN classifier. 
Experimental results on hand-written digit database and face 
databases show an improvement of 2DADA over other 
traditional dimension reduction techniques. 

Index Terms— 2DLDA, 2DBDA, 2DADA, dimension 
reduction

1. INTRODUCTION 

Recently, 2-Dimensional Linear Discriminant Analysis 
(2DLDA)[1-5] is becoming popular and widely used in face 
recognition and classification. Compared to 1-Dimensional 
LDA (1DLDA), 2DLDA works directly with images in their 
native state, as two-dimensional matrices, rather than 1D 
vectors. Hence the image does not need to be transformed, 
which not only saves the computational cost but also 
preserves all spatial information of the original images. In 
addition, the singularity problem resulting from the high-
dimensionality of vectors is artfully solved.  

Up to present, there are several variants of 2DLDA.  Li 
et al. [1] and Sanguansat et al. [2] presented their 2DLDA 
with only reducing the number of columns and keeping the 
number of rows unchanged. Instead, Yang et al. [3] 
presented a two-step algorithm, which first reduces the 
number of columns and then reduces the number of rows. 
Ye et al. [4] proposed to calculate the row and column 
transformation matrices in an iterative way. Fortunately, 
they also recommended one iteration is sufficient because 
the accuracy curves were stable with respect to the number 
of iterations T. Later, Inoue et al. [5] proposed two non-
iterative algorithms, namely selective and parallel algorithm. 
However, those two algorithms are more complex than the 
iterative one with T=1. 

Based on Ye et al.’s 2DLDA [4], we extend 1DBDA to 
2DBDA and combine 2DLDA and 2DBDA to propose a 
novel 2D Adaptive Disriminant Analysis (2DADA). 
2DADA merges 2DLDA and 2DBDA in a unified 
framework and offers more flexibility and a richer set of 
alternatives to each individual method in the parametric 
space.  2DADA can easily find an optimal projection with 
adaptation to different sample distributions and discover a 
good classification in the subspace with K-NN classifier. 
Extensive experiments on the hand-written digit and face 
databases exhibit the superior performance of 2DADA.  

     2. 2D ADAPTIVE DISCRIMINANT ANALYSIS 

2.1. 2DLDA 

2DLDA tries to find two transformation matrices 
1lrL and 2lcR that map each crX from 

originally high dimensional space to a low-dimensional 
space 21 llT XRLY , in which the most discriminant 
features are preserved. Intuitively it makes samples from the 
same class cluster to each other and samples from different 
classes separate from each other. 

Mathematically, it could be modeled as finding two 
optimal projections L and R that maximizes the following 
ratios: 
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variance in the low-dimensional space. 
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i ,...,1,,...,1,x denote the feature matrix of 
training samples. C is the number of classes. When C=2, it 
is 2D-Fisher Discriminant Analysis (2DFDA) and when 
C>2, it is called 2D-Multiple Discriminant Analysis 
(2DMDA), a natural extension of 2DFDA to multiple 
classes. jN is the number of the samples of the jth class, 

I  9851424407281/07/$20.00 ©2007 IEEE ICASSP 2007



j
ix is the ith sample from the jth class, jm is mean matrix of 

the jth class, and m is grand mean of all examples. 
Due to the difficulty of computing the optimal L and R 

simultaneously, Ye et al. [4] derive an iterative algorithm. 
Initially, T

lIR 0,
20 , we can compute the optimal 
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Next, with the computed L and calculate the optimal 
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This procedure is repeated for T iterations. In real 
application, T is often set to be 1. 

2.2. 2DBDA 

LDA makes the equivalent (unbiased) effort to cluster 
negative and positive samples. But intuition suggests that 
clustering the negative samples may be difficult and 
unnecessary because they may be from different classes 
(Fig 1. (a)). Hence, Biased Discriminant Analysis (BDA) [6] 
is proposed to cluster only positive samples and makes the 
negative samples far away from the positive ones. In this 
paper, we extend BDA to 2DBDA, which differs from 
2DLDA in a modification on the computation of 
transformed between-class scatter matrix BS  and within-
class scatter matrix WS . They are replaced by PNS  and 

PS , respectively. 
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where pm is the mean matrix of the positive examples. 

Negativei

T
PiPiPNS ))(( mxmx is the scatter matrix 

between the negative examples and the centroid of the 
positive examples, and 

Positivei

T
PiPiPS ))(( mxmx  is 

the scatter matrix within the positive examples. 
PN indicates the asymmetric property of this approach, 

which means the user’s biased opinion towards the positive 
class, thus the name of biased discriminant analysis [6]. 

2.3. 2DADA 

Given that 2DLDA and 2DBDA have their own 
assumptions and pay attention to different roles of the 
positive and the negative examples in finding the optimal 
discriminating subspace, it is our expectation that they can 
be unified.  

In this paper, we propose a new method 2DADA (2D-

Adaptive Discriminant Analysis) based on 2DLDA, 
2DBDA and ADA [7], which finds an optimal projection.  
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Table I summarizes five special cases of 2DADA. From 
Table I, we can find that the 2DADA recovers 2DBDA 
when  and  are set to be 0 and 0 in Case 1. Case 5 
corresponds to a 2DLDA-like projection with  and  set to 
0.5 and 0.5. Case 4 finds a projection that is on the contrary 
side of 2DBDA, which is called Counter-2DBDA. Case 2 
and Case 3 is a couple of contrary distribution scenarios, 
which assume that the negative (positive) samples are 
similar and positive (negative) samples might be from 
different classes.  All these five cases fit certain sample 
distributions and have correspondence with some scenarios 
as illustrated in Fig. 1.  
     Table 1. Special cases of Adaptive Discriminant Analysis 

In order to illustrate these five cases and show the 
advantages of 2DADA over 2DBDA and 2DLDA, we use 
synthetic data to simulate different sample distributions as 
shown in Fig. 1. Positive examples are marked with “+” s 
and negative examples are marked with “o” s. In each case, 
we apply 2DBDA, 2DLDA and 2DADA to find the best 
projection direction by their own criterion functions. The 
resulting projection lines are drawn in dotted, dash-dotted 
and solid lines, respectively. In addition, the distributions of 
positive and negative samples along these projections are 
also drawn like bell-shaped thicker and thinner curves along 
projection line, assuming Gaussian distribution for each 
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                                                    (e) Case 5 
Fig. 1. Comparison of 2DBDA, 2DLDA and 2DADA for 
dimension reduction from 2-D to 1-D on synthetic data.  

From Fig.1, we can see these five cases actually 
represent several typical data distribution scenarios. Case 1 
best fits the distribution where all positive samples are alike 
while negative ones may be irrelevant (Fig.1 (a)).  Case 4 is 
on the opposite side of Case 1, in which negative samples 
share strong correlations while positive samples may be 
quite different (Fig.1 (d)). Case 2 and Case 3 represent the 
imbalanced data set. In each case, the size of positive 
(negative) samples is much larger than that of negative 
(positive) samples (Fig. 1(b) and Fig.1 (c)). Case 5 is the 
scenario where the major descriptive directions of positive 
samples and negative genes are upright (Fig. 1 (e)). 

From projection results, we can see 2DLDA treats 
positive and negative samples equally, i.e., it tries to cluster 
the positive samples and decrease the scatter of the negative 
samples, although some positive (negative) samples maybe 
come from different sub-classes. This makes it a bad choice 
in Case 1 and Case 4. Similarly, since 2DBDA assumes all 
positive samples are projected together, it fails in Case 4 
and Case 5. In Case 2 and Case 3, 2DBDA and 2DLDA are 

found not applicable for imbalanced data sets, because they 
tend to severely bias to cluster the dominating samples. 

In all five cases, 2DADA yields good projection with 
positive samples and negative samples well separated and 
outperforms both 2DBDA and 2DLDA.  It clearly 
demonstrates that no matter if it is an imbalanced data set or 
samples are from different sub-class clusters, 2DADA can 
adaptively fit into different distributions of samples and find 
a balance between clustering and separating, which are 
embedded in the criterion function. Here, we only show five 
special cases of 2DADA. More accurate data model fitting 
could be achieved by fine parameter tuning.  

3. EXPERIMENTS AND ANALYSIS 

In this section, we experimentally evaluate the performance 
of the 2DADA algorithm on hand-written digit recognition 
and face classification. In all experiments, our 2DADA is 
tested with , evenly samples from 0 to 1 with step size 
of 0.1. Besides, 10-fold cross validation is used to report the 
mean accuracy of a K-NN query with K=10. 

3.1. 2DADA for hand-written digit recognition 

First, we tested 2DADA, 2DBDA, 2DLDA and their 1D-
based methods on a subset of MNIST data set [8], which 
contains 400 similar hand-written 1’s (200) and 7’s (200). 
Some example images are showed in Fig.2.  

 
                 Fig.2 Examples of hand-written images  

In this experiment, the original dimension of images 
28 28 is reduced to dd (d<28) by all 2D based methods. 
Correspondingly, the reduced dimension p in their 1D based 
methods is chosen such that both 1D and 2D methods use 
the same amount of storage for the transformation matrices 
and the reduced presentations [9]. For examples, on the 
MNIST dataset, d=2,4,6,8,10,12,14 for 2DADA are used, 
corresponding to p =2,6,12,22,34, 49 and 67 for 1DADA. 

The average accuracy rate across 10-fold cross 
validation over the variation of dimension d is plotted in Fig. 
3, where the x-axis denotes the values of d (between 2 to 
14).  

Fig.3. Comparison of accuracy with different dimensions. 

From Fig.3, we can clearly find: 1) 2D based 
approaches (i.e. 2DADA, 2DBDA) achieve higher or 
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comparable accuracy with their 1D based approach 
(1DADA and 1DBDA). In addition, in our experiments, we 
found 2D methods are almost one order of magnitude faster 
than 1D methods. It justifies that 2D techniques have lower 
loss of information and computational effective with the 
same amount of storage. 2) 2DADA consistently 
outperforms others irrespective of variation in dimensions. 
Its stableness verifies that it is a powerful dimension 
reduction method for classification.         

3.2. 2DADA for face classification 

To evaluate 2DADA for face classification, we tested it on 
three well-known face image databases with change of 
illumination, expression and head pose, respectively. The 
Harvard Face image database contains images from 10 
individuals, each providing total 66 images, which are 
classified into 10 sets based on increasingly changed 
illumination condition [10]. The AT&T Face Image 
database [11] consists of grayscale images of 40 persons. 
Each person has 10 images with different expressions, open 
or closed eyes, smiling or non-smiling and wearing glasses 
or no glasses. The UMIST Face Database [12] consists of 
564 images of 20 people, which covers a range of poses 
from profile to frontal views. Figure 4 gives some example 
images from the databases. 

 
      (a) Change of illumination condition, size is 84 96 

 
              (b) Change of expressions, size is 92 112 

 
                 (c) Change of head pose, size is 92 112 

Fig.4. Example Face images from three databases 

Table 2. Comparison of 2D based methods on three different 
face databases. 

Harvard Database Accuracy 
(%)

Subset1 Subset2 Subset3 

AT&T 
Database 

UMIST 
Database

2DADA 95 95.5 94.6 98.5 98.5

2DBDA 83.3 91.1 82.3 98.5 94.3

2DLDA 91.6 93.3 91.7 97.5 96.1

2DPCA 90 90 90 98 99.8
 

Table 2 shows classification accuracy of 2DADA, 
2DLDA, 2DBDA and 2DPCA on these three datasets with 
reduced dimension d=6. For each database, we randomly 

chose one person’s face images as positive and the rest face 
images of others are considered as negative.  

It is clear from Table 2 that the proposed 2DADA still 
performs better or comparable to other techniques in all 
tests and more robustness to the changes of illumination, 
expression and pose than other techniques. It clearly 
demonstrates that 2DADA could find the most discriminant 
features that fit different distributions of samples and 
classification task. 

4. CONCLUSIONS  

This paper proposes a novel 2-Dimensional Adaptive 
Discriminant Analysis (2DADA) for high dimensionality 
problem. 2DADA provides a richer set of alternatives to 
2DLDA and 2DBDA. As a result, it takes advantage of both 
of their merits and finds an optimal projection with 
adaptation to different sample distributions. The proposed 
approach is applied to hand-written digit recognition and
face classification.   Its superior performance demonstrates 
that 2DADA is a promising and efficient dimension 
reduction approach. 

Acknowledgement: This work was supported in part by 
San Antonio Life Science Institute (SALSI) and the Army 
Research Office (ARO) grant under W911NF-05-1-0404. 
 

5. REFERENCES 

[1] M. Li and B. Yuan. “2D-LDA: A novel statistical linear 
discriminant analysis for image matrix,” Pattern Recognition 
Letters, 26(5): 527-532, 2005. 
[2] P. Sanguansat, W. Asdornwised, et al., “Two-dimensional 
linear discriminant analysis of principle component vectors for 
face recognition,” Proc. of ICASSP, 345-348, 2006. 
[3] J. Yang, D. Zhang, X. Yong, and J. Yang, “Two-dimensional 
linear discriminant transform for face recognition,” Pattern 
Recognition, 38 (7): 1125-1129, 2005. 
[4] J. Ye, R. Janardan, and Q. Li, “Two-dimensional linear 
discriminant analysis,” Advances in Neural Information 
Processing Systems (NIPS2004), 17:1569-1576, 2004. 
[5] K. Inoue and K. Urahama, “Non-Iterative Two-Dimensional 
Linear Discriminant Analysisg,” Proc. of ICPR, 2006. 
[6] X. Zhou and T. S. Huang, “Small sample learning during 
multimedia retrieval using biasMap,” IEEE CVPR, 2001. 
[7] J. Yu and Q. Tian, “Adaptive discriminant projection for 
content-based image retrieval,” Proc. of ICPR, 2006. 
[8] Y. LeCun, et al., http://yann.lecun.com/exdb/mnist/. 
[9] J. Ye, R. Janardan, and Q. Li, “GPCA: An efficient dimension 
reduction scheme for image compression and retrieval,” KDD’04, 
August 22-25, 2004. 
[10] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. 
Fisherfaces: recognition using class specific linear projection,” 
IEEE Trans, PAMI, Vol. 19, No.7, July 1997. 
[11] H.A. Rowley, S.Baluja, and T.Kanade, “Neural Network-
Based Face Detection,” IEEE Trans. PAMI, Vol.20, 1998. 
[12] F.Samaria and A. Harter, “Parameterisation of a stochastic 
model for human face identification,” IEEE workshop on 
Application of Computer Vision, Sarasota FL, December 1994. 

I  988


