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ABSTRACT 
 
Active learning and semi-supervised learning methods are 
frequently applied in multimedia annotation tasks in order to 
reduce human labeling effort. However, in most of these methods 
only single modality is applied. This paper presents an interactive 
video annotation framework, which is based on semi-supervised 
learning and active learning with multiple multimodalities. In the 
proposed framework, unlabeled samples are iteratively selected to 
be annotated manually according to certain strategy which has 
taken the potentials of different modalities into account, and then a 
graph-based semi-supervised learning algorithm is conducted on 
each modality. This process repeats for several rounds, and the 
results obtained from multiple modalities are then fused to 
generate final output. The proposed framework is computationally 
efficient, and the experimental results on TRECVID 2005 
benchmark show that the proposed framework considerably 
outperforms previous approaches.  
Index Terms— Video annotation, active learning, multimodality 

1. INTRODUCTION 
 
Semantic annotation of video sequences is an elementary step to 
obtain video metadata, which facilitates content-based video 
retrieval, summarization, and other manipulations. Ideally, video 
annotation task is formulated as a classification problem and it is 
accomplished by learning based methods. However, due to the 
large gap between low-level features and high-level semantic 
concepts, typically learning based methods require a large labeled 
training set to achieve a satisfactory performance. As manual 
annotation is labor-intensive and time-consuming (e.g., experiment 
in [4] proves that typically annotating 1 hour of video takes 2 to 18 
hours), many methods to help reduce human effort have been 
proposed [5  9]. 

One way to deal with the problem is to apply Semi-Supervised 
Learning (SSL) methods, which can tackle the training data 
insufficiency problem by leveraging large amount of unlabeled 
data. Another approach is to utilize active learning, which selects 
the most informative samples for further labeling so that the 
training set is more effective. 

Although many different SSL and active learning methods have 
been successfully applied in multimedia classification, most of the 
existing works neglect context of “multimodality”, i.e., these 
methods are only applied with single modality. Here multimodality 
is defined as multiple features of multimedia content (such as color, 

edge, texture, audio, and text), and multimodality fusion is defined 
as combining classification results obtained with these features. As 
demonstrated by a great deal of experiments, multimodality fusion 
can improve multimedia classification performance compared with 
simply concatenating different features into a large vector, since 
the latter method usually encounters dimensionality curse problem, 
which may introduce performance degradation [14]. 

In [5, 6], Chen et al. proposed a simple multimodality active 
learning method with SVM, which selects a certain number of 
samples closest to the hyperplane of each sub-model (i.e., model 
trained based on each individual modality). Experiments have 
demonstrated its superiority over single-modality based active 
learning. However, this method neglects the “discriminative 
ability” of different modalities. For example, some features may 
not be discriminative enough for a giving concept, and 
consequently the corresponding sub-models can hardly be 
improved by active learning process, thus selecting more samples 
for other modalities may be more promising. 

In this paper, we propose an efficient interactive video 
annotation framework based on SSL and active learning with 
multiple modalities. In this framework, we present a novel strategy 
to select samples for manual labeling in the active learning process, 
where the numbers of selected samples for different modalities are 
adapted to the performance variations of their corresponding sub-
models. For each sub-model, we choose samples according to the 
following three criteria: informativeness, density, and diversity. 
With the labeled samples, manifold-ranking (a graph-based SSL 
method) is applied with each modality feature.  

2. THE PROPOSED FRAMEWORK 

In this section, we introduce the proposed interactive video 
annotation framework illustrated in Figure 1. Firstly, videos are 
segmented into small temporal units (shots or sub-shot). Then 
several feature sets are extracted from these units. Typically each 
feature set is regarded as one modality, but alternatively we can 
also use other modality generation method, such as the method 
proposed in [14]. 

In the interactive annotation process, we iteratively employ 
manifold-ranking (a graph-based SSL method) [9, 17] to learn new 
model for each modality, and in each iteration a number of 
unlabeled samples are selected for manually annotation according 
to certain strategy. The manifold-ranking process and our sample 
selection strategy are introduced in the following sub-sections. 

After several iterations, the results obtained from multiple sub-
models are fused by linear combination with the weights decided 
by cross-validation on labeled set, since existing works prove this 
method is both effective and efficient. 

_________________________________   

*  This work was performed when the first author was visiting Microsoft 
Research Asia as a research intern. 
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Figure 1. Proposed interactive video annotation framework 

 
2.1. Manifold-Ranking 

Manifold-ranking is a graph-based SSL method, which is based on 
an assumption that the labels of nearby samples are close [17]. Let 
L = {x1, x2, …, xl} be labeled set and U = {xl+1, xl+2, …, xn} be the 
unlabeled set. Considering there are M modalities, each sample xi 
is represented by {xi

1, xi
2, …, xi

M}, where xi
m is the feature 

representation for xi in the m-th modality (similarly, for other 
notations we also use superscript to denote modality index). We 
define a vector y+ = {y1

+, y2
+, …, yn

+}, where yi
+ = 1 if xi is a 

labeled positive sample, and yi
+ = 0 otherwise. Conversely, we 

define y-={y1
-, y2

-, …, yn
-}, where yi

- = -1 if xi is a labeled negative 
sample, and yi

- = 0 otherwise. Then we implement the manifold-
ranking process for the m-th modality as follows: 

1. Define a sparse graph above all samples in m-th modality: xi
m 

and xj
m are connected if xi

m belongs to the K-nearest 
neighborhood of xj

m, and vice versa.  
2. Define affine matrix Wm by letting Wij

m = exp(-|xi
m - xj

m|/2 ) 
if xi and xj are connected and i  j, and otherwise Wij

m = 0. 
3. Construct a matrix Sm = D-1/2WmD-1/2 in which D is a diagonal 

matrix with its (i, i)-element equals to the sum of the i-th row 
of Wm. 

4. Initialize [fm+, fm-]. Then iterate [fm+, fm-] = S×[fm+, fm-]+(1- ) 
[y+, y-] for T times, where  is a parameter in (0, 1).  

5. Combine fm+ and fm- as fm = fm++ fm- for output, where  is a 
positive weight. 

The above manifold-ranking process is similar to the one 
adopted in [9]. There are several points that need to be addressed 
in the above process. The first one is that we adopt a sparse graph. 
This implementation significantly reduces computational and 
storage cost while retaining close performance [9]. Another issue 
is that we have chosen L1 distance metric in the affine matrix W. 
This is because experiments demonstrate that L1 distance better 
approximates the perceptual difference for many visual features [9]. 
In step 5 we output results as fm = fm++ fm-. This is because 
positive samples are always more scarce and compact than 
negative samples, and typically they contribute more in concept 

learning [9]. Thus we set a weight  to modulate the effect of 
positive samples and typically we set  > 1. 

2.2. Sample Selection Strategy 

Firstly we consider the sample selection problem for individual 
modality. We propose an approach based on three criteria: 
informativeness, density, and diversity. Then we present our 
multimodality sample selection strategy, where the numbers of 
selected samples for different modalities are adapted according to 
their performance variations, so that different potentials of 
multiple modalities are taken into account.  

2.1.1. Informativeness 

This sampling criterion aims at selecting the unlabeled samples 
that can add most information to the current model. Generally, the 
most “uncertain” samples in the classification process are selected, 
such as the samples near the hyperplane in SVM [13]. However, in 
terms of video annotation, as for most concepts the positive 
samples are much less than negative ones, then labeling a positive 
sample has much larger effect than a negative one. In this case we 
should select the samples that are more likely to be positive, 
similar to the relevance feedback process in CBIR [12]. To make a 
trade-off between these two criteria, we build a linear combination 
of them, where the weights are decided by the frequency measure 
of the concept. We define the frequency measure of a concept as 
the percentage of positive samples in labeled training set, i.e.,   

iy
frequency

l
                             (2) 

We limit the frequency measure to [0, 0.5], and then define the 
informativeness measure of unlabeled sample xi as follows 

( )

2 (1 ( ) ) (1 2 ) ( )

m
i

m m
i i

informativeness x

frequency f x frequency f x
     (3) 

If frequency is near 0, i.e., the positive samples are very scarce, 
so that they contribute much more than negative samples in 
concept learning. Then fm+(xi) has a weight near 1, and the samples 
more likely to be positive are selected for manually annotation. If 
frequency is large, i.e., the positive and negative samples are 
balanced (such as several frequent concepts: indoor, outdoor, 
people, face, etc), then 1-|fm(xi)| has larger weight and the samples 
closer to classification boundary are selected. 

2.1.2. Density 

Prior works indicate that prior density distribution p(x) can be 
utilized in active learning. Cohn et al. have demonstrated its 
usefulness in theory [7]. Wu et al. define a representativeness 
measure for each sample according to its distance to nearby 
samples, and take it as a criterion of sample selection [15]. Zhang 
et al. estimate data distribution p(x) by Kernel Density Estimation 
(KDE) [11], and then take it into account in sample selection [16]. 

Here we define density measure based on KDE, by which p(x) 
can be estimated as follows 

1( ) ( )
i

m m m
i

x L U

p x K x x
n

                         (4) 

where K(x) is a kernel function, which satisfies K(x) > 0 and 
K(x)dx = 1. We use exponential kernel (i.e., K(x)=exp(-|x|/2 ), 
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and for each estimated point we only consider the nearby samples. 
Then according to the definitions in Section 3.1 we have  

1

1( )
n

m m
i ij

j

p x W
n

                               (5) 

Consequently we define density measure by normalizing p(x) to 
[0, 1] as follows  

1

1

( )
max

n
m

ij
jm

i n
m

iji j

W
Density x

W

                          (6) 

2.1.3. Diversity 

Previous studies demonstrate that the selected samples should be 
diversified [3, 14]. Thus we define a diversity measure for 
unlabeled data similar to these existing works and incorporate it 
into our sample selection strategy. Given kernel K, the angle 
between two samples xi

m and xi
m is defined as  

( , )
cos( , )

( , ) ( , )

m m
i jm m

i j m m m m
i i j j

K x x
x x

K x x K x x
               (7) 

We adopt exponential kernel again and ignore the faraway 
sample pairs, thus it is easy to derive that the diversity measure for 
sample xi can be defined as  

( ) 1 max
j

m m
i ijx L

Diversity x W                           (8) 

2.1.4. Multimodality Sample Selection 

In this sub-section we discuss our multimodality sample selection 
strategy based on the above three criteria. According to theoretical 
analysis [7], it is more rational to use density measure as a weight 
of informativeness measure than linearly combing them. So here 
we weight informativeness measure by density, and then linearly 
combine them with diversity measure, i.e.,  

( )

( ) ( ) (1 ) ( )

m
i

m m m
i i i

effectiveness x

density x informativeness x diversity x
(9) 

Experiments will demonstrate that this strategy is more 
effective than building a linear combination of all three criteria. 

Up to now we have addressed sample selection criteria for 
individual modality. A remained problem is how to select samples 
for multiple modalities.  

In [5], Chen et al. analyze that samples should be selected for 
each individual modality to keep the specificity of multiple feature 
sets, so that the selected samples will not be constrained in a more 
and more restricted area. Thus they select equal number of samples 
for each modality. Although this method has shown appealing 
performance, it ignores the different potentials of multiple 
modalities. For several modalities that are not discriminative 
enough for the giving concept, it will achieve a “saturation” state 
after several active learning iterations, i.e., selecting more samples 
for this modality can hardly improve its corresponding sub-model. 
In this case, we should select more samples for other modalities. 
Thus we construct our strategy based on a notion of performance 
gain. For each modality, we define its performance gain as its 
performance variation between the latest two learning iterations, 

which can be estimated from the latest two selected sample batches 
as follows 

0, ( ) ( 1)
( ) ( 1),

m m
m

m m

if performance t performance t
perf

performance t performance t else
     (10) 

where t is active learning iteration index. Then we let the numbers 
of selected samples be proportional to the performance gains of 
multiple modalities, i.e.,  

1

m
m

M
m

m

perfh h
perf

                             (11) 

The above strategy is based on an assumption that the 
performance gain of a modality is larger if the modality is further 
from saturation. If a modality has a large performance gain, then 
more samples are selected for this modality in the next iteration; 
otherwise, if a modality achieves saturation state, then few samples 
are selected for it. Experiments demonstrate that this adaptive 
approach outperforms selecting fixed number of samples for each 
modality. 
 

3. EXPERIMENTS 
 

To evaluate the performance of the proposed framework, we 
conduct experiments which follow the guideline of TRECVID 
2005 high-level feature extraction task. TRECVID 2005 dataset 
consists of 273 news videos and is about 160 hours in duration [1]. 
The dataset is split into a development set and a test set. The 
development videos are segmented into 49532 shots and 61901 
sub-shots, and the test videos are segmented into 45766 shots and 
64256 sub-shots. A key-frame is selected for each sub-shot, and 
from the key-frame we extract the following six feature sets: (1) 
block-wise color moment based on 5 by 5 division of the image 
(225D); (2) HSV correlogram (144D); (3) HSV histogram (64D); 
(4) wavelet texture (128D); (5) co-occurrence texture (16D); and 
(6) lay-out edge distribution histogram (75D). Each feature set is 
regarded as a modality, and thus we obtain six modalities.  

We take sub-shot as the unit for interactive annotation, and limit 
the selected samples in the development set, so that the test set is 
only used for performance evaluation. After several active learning 
iterations, we fuse the results on the test set from sub-shots to shots 
by max aggregation, and then evaluate average precision of the 
first 2000 shots, which follows the guideline of TRECVID 
benchmark [2]. In this way, we make our results comparable with 
reported results for the TRECVID task [10]. In experiments, we set 
parameters , , K, and T in manifold-ranking process to 0.9, 10, 
25, and 20, respectively (see Section 2.1). We set parameter  in 
Eq. (9) to 0.7. 

Firstly, we conduct several experiments with regarding full 
development set as training data. We compare the following three 
methods: (1) SVM + single modality (SVM+SM), i.e., SVM with 
all features concatenating into a large vector; (2) manifold-ranking 
+ single modality (MR+SM); and (3) manifold-ranking + 
multimodality (MR+MM), i.e., conduct manifold-ranking for each 
modality and then fuse the results. We illustrate the experimental 
results in Table 1. From the results we can see that MR+MM 
remarkably outperforms SVM+SM and MR+SM, which indicates 
that multimodality fusion is critical to annotation performance. 
The performance of MR+MM is comparable to the reported 
leading results in the TRECVID task [10]. 
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Table 1. Experimental results with full development set 
Concept SVM+SM MR+SM MR+MM 
Walking_Running 0.206 0.204 0.221 
Explosion_Fire 0.087 0.069 0.070 
Maps 0.455 0.472 0.473 
Flag-US 0.097 0.092 0.114 
Building 0.483 0.449 0.461 
Waterscape_Waterfront 0.382 0.367 0.396 
Mountain 0.319 0.354 0.381 
Prisoner 0.0003 0.002 0.0041 
Sports 0.402 0.383 0.405 
Car 0.314 0.265 0.286 
MAP 0.274 0.266 0.281 
 
Then we conduct experiments to demonstrate the effectiveness 

of our active learning strategy. We compare our approach with the 
following four different schemes: 
Scheme 1:            

Integrate a global effectiveness measure as effectiveness(xi) = 
{ perfm×effectiveness(xi

m)}, and then select h samples according 
to this measure. 
Scheme 2:  

Select h/M samples for each modality, i.e., the method proposed 
in [5]. 
Scheme 3:  

Replace Eq. (9) by defining effectiveness measure as a linear 
combination of informativeness, density, and diversity measures, 
where the weights are set to 0.4, 0.3, and 0.3 respectively. 
Scheme 4:  

Randomly select samples. 
We set h = 500 (i.e., select 500 samples in each iteration). The 

results are illustrated in Fig. 2. From the figure we can see that the 
proposed approach remarkably outperforms the other four schemes. 
It can achieve about twice MAP compared with random sample 
selection, and obtains a comparable performance with MR+SM on 
full development set when 15% of the original development set are 
labeled (about 10000 samples). 

According to the description in Section 2, it is easy to derive 
that the computational cost of each active learning iteration scales 
as O(M×T×K×n), where M is the number of modalities, T is the 
propagation time in manifold-ranking process, K is the 
neighborhood size, and M is the number of modality. In practical 
experiments the response time for interactive annotation is about 
15 seconds (Pentium 1.8G Hz, 512M RAM). Thus the proposed 
framework is more efficient and practical compared with 
previously proposed methods (such as SVM + active learning). 
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Figure 2. Active learning performances with different strategies 

4. CONCLUSION AND FUTURE WORK 

In this paper we proposed an efficient interactive video annotation 
framework based on semi-supervised learning and active learning. 
In the proposed framework, semi-supervised learning is conducted 
for each modality, and a novel sample selection strategy is adopted 
with multiple modalities. The experiments on TRECVID dataset 
have shown promising results. 

In this study we only consider annotating different concepts 
independently. However, in practice it may be more efficient to 
annotate multiple concepts simultaneously [8]. In the future we 
will take simultaneous annotation of multiple concepts into 
account in our framework.  
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