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ABSTRACT

This paper presents a nite discrete mixture model based on
both the Dirichlet and the multinomial distributions to add
spatial information to color histograms. The estimation of the
parameters and the determination of the number of compo-
nents in our model are based on the classi cation expectation-
maximization approach and the integrated complete likeli-
hood criterion, respectively. The developed model is applied
with success for color images databases summarization.

Index Terms— Dirichlet distribution, multinomial, nite
mixture models, Image databases.

1. INTRODUCTION

In recent years, there has been a tremendous increasing in the
generation of digital images. As this content grows, the need
for tools to summarize, lter and retrieve image databases
becomes more accurate. A variety of techniques have been
proposed to retrieve this content [1]. Although different, all
these techniques agree on the fact that an ef cient summariza-
tion scheme plays an important role. Summarizing an image
database is very important because it simpli es the task of re-
trieval by restricting the search for similar images to a smaller
domain of the database. Summarization is also very ef cient
for browsing. In this paper, we propose a summarization ap-
proach based on nite discrete mixture models. Color his-
tograms are widely used as features vectors for images sum-
marization [2]. However, histograms do not include any spa-
tial information which is an important issue in human visual
perception. One of the most successful approaches to inte-
grate the spatial information with the color histograms is the
color correlogram [3]. The color correlogram describes the
spatial correlation of colors as a function of spatial distance.
Let I be an L × C image composed of pixels p(x, y). The
colors in I are quantized into m colors c1, . . . , cm. For a
pixel p, let I(p) denotes its color. Let Ic = {p|I(p) = c}
and D = {d1, . . . , dD} a set of D xed distances, which are
measured using the L∞ norm. The correlogram of image I
is de ned for color pair (ci, cj), i, j = 0, . . . , m and distance

d ∈ D as:

γd
ci,cj

(I) ≡ Pr
[
p2 ∈ Ici ||p1 − p2| = d

]
, p1 ∈ Ici , p2 ∈ I

(1)
Which gives the probability that given any pixel p1 of color
ci, a pixel p2 at a distance d from pixel p1 is of color cj . In
order to compute the correlogram it suf ces to compute the
following count:

Γd
ci,cj

(I) ≡ Card
{
(p1, p2) ∈ Ici ×Icj ||p1 − p2| = d

}
(2)

whereCard{} refers to the number of elements of a set. Note
that the size of the correlogram is O(Dm2), then a large D
would result in expensive computation and large storage re-
quirement [3]. In this paper, we propose to model the spatial
color information using discrete nite mixture models by ob-
serving that for each color pair (ci, cj), we can associate a
D-dimensional vector of counts described as follows:

�fci,cj
= (fd1

ci,cj
, . . . , fdD

ci,cj
) (3)

where fd
ci,cj

(I) = Card
{
(p1, p2) ∈ Ici×Icj ||p1−p2| = d

}
.

Then, the spatial color information is represented by m2 D-
dimensional vectors of counts which can be modeled by a
discrete mixture.

2. THE FINITE DISCRETE MIXTURE MODEL

Finite mixtures can be viewed as a superimposition of a nite
number of component densities [4]. The choice of the com-
ponent model is very critical in mixture decomposition. The
number of components required to model the mixture and the
modeling capabilities are directly related to the component
model used. For multivariate data, attention has focused on
the use of multivariate Gaussian components. However, for
count data, the Gaussian assumption turns out to be inade-
quate and the majority of the researchers consider the Multi-
nomial distribution. If we suppose that �fci,cj

follows a Multi-
nomial distribution with parameters �P = (P1, . . . , PD):

p(�fci,cj |�P ) =
(
∑D

d=1 fd
ci,cj

)!

fd1
ci,cj !f

d2
ci,cj ! . . . fD

ci,cj
!

D∏
d=1

P
fd

ci,cj

d (4)
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where PD = 1 − ∑D−1
i=1 Pi. Then, the frequencies will be

used to set the probabilities, obtaining:

P̂d =
fd

ci,cj∑D
l=1 f l

ci,cj

(5)

The frequencies alone are a poor estimate, however. An ap-
propriate and ef cient solution to address this issue is the in-
troduction of a prior information into the construction of the
statistical model. The prior information, for the Multinomial
assumption, is given by the Dirichlet distribution to form good
P̂d estimates. The Dirichlet distribution with parameter vec-
tor �α = (α1, . . . , αD) is de ned by [5]:

p(P1, . . . , Pd) =
Γ(α1 + α2 + . . . + αD)
Γ(α1)Γ(α2) . . .Γ(αD)

D∏
d=1

Pαd−1
d (6)

The Dirichlet distribution depends onD parametersα1, . . . , αD,
which are all real and positive. This distribution is the mul-
tivariate extension of the 2-parameter Beta distribution. The
mean of the Dirichlet distribution is given by:

E(Pd) =
αd∑D
l=1 αl

(7)

The majority of the researchers assign a Dirichlet prior to the
parameter vector of a multinomial distribution. This is due to
the fact that the Dirichlet is a conjugate prior to the multino-
mial distribution, i.e the posterior is also Dirichlet. Indeed,
we have:

p(�fci,cj ,
�P |�α) = p(�fci,cj |�P )p(�P |�α)

=
Γ(

∑D
d=1 fd

ci,cj
+ 1)∏D

d=1 Γ(fd
ci,cj

+ 1)

Γ(
∑D

d=1 αd)∏D
d=1 Γ(αd)

D∏
d=1

p
fd

ci,cj
+αd−1

d (8)

Integrating over �P , straightforward manipulations give us the
marginal distribution of �Xi:

p(�fci,cj
|�α) =

∫
�P

p(�fci,cj
, �P |�α)d�P

=
Γ(

∑D
d=1 fd

ci,cj
+ 1)Γ(

∑D
d=1 αd)

Γ(
∑D

d=1 fd
ci,cj

+
∑D

d=1 αd)

D∏
d=1

Γ(fd
ci,cj

+ αd)
Γ(αd)Γ(fd

ci,cj
+ 1)

We call this density the multinomial Dirichlet distribution which
is the multi-dimensional case of the widely studied Beta bino-
mial distribution. Note that comparing to the multinomial, the
multinomial Dirichlet has one extra degree of freedom, since
its parameters are not constrained to sum to one, which makes
it more practical [6]. Then, the posterior is given by:

p(�P |�fci,cj
, �α) =

p(�fci,cj
, �P |�α)

p(�fci,cj
|�α)

=
Γ(

∑D
d=1 fd

ci,cj
+

∑D
d=1 αl)∏D

d=1 Γ(αd + fd
ci,cj

)

D∏
d=1

P
αd+fd

ci,cj
−1

d (9)

which is a Dirichlet with parameters (α1 + fd1
ci,cj

, . . . , αD +
fdD

ci,cj
). Using Eq. 9 and Eq. 7, we obtain:

P̂d =
αl + fd

ci,cj∑D
l=1 αl +

∑D
l=1 f l

ci,cj

(10)

We can think that the hyperparameters αd are hidden quanti-
ties added in order to represent our con dence about the esti-
mates and to moderate the extreme estimates given by Eq. 5.
As we can note, as the number of observations increases the
estimates converge to Eq. 5. But, if the quantities αd grow,
our estimates tend to be further off from the estimates based
just on the observed frequencies and given by Eq. 5. A multi-
nomial Dirichlet mixture withM components is de ned as:

p(�fci,cj
|Θ) =

M∑
k=1

p(�fci,cj
|�αk)p(k) (11)

where p(k) (0 < p(k) ≤ 1 and
∑M

k=1 p(k) = 1) are the mix-
ing proportions and p(�fci,cj |�αk) is the multinomial Dirichlet.
The symbol Θ refers to the entire set of parameters to be es-
timated: Θ = (�α1, . . . , �αM , p(1), . . . , p(M)) where �αk =
(αk1, . . . , αkD) is the parameter vector for the kth popula-
tion.

3. THE MULTINOMIAL DIRICHLET MIXTURE
ESTIMATION AND SELECTION

3.1. Maximum Likelihood Estimation

Given the set of them2 independent vectorsF = {�fci,cj , i, j =
1 . . . , m}, the log-likelihood corresponding to aM -component
is:

L(Θ,F) = log

m∏
i,j

p(�fci,cj |Θ) =
m∑
i,j

log

M∑
k=1

p(�fci,cj |�αk)p(k)

(12)
It is well known that the maximum likelihood (ML) estimate:

Θ̂ML = arg max
Θ

{L(Θ,F)} (13)

The ML estimates of the mixture parameters can be obtained
using EM and related techniques [4]. The EM algorithm is a
general approach to maximum likelihood in the presence of
incomplete data. In EM, the “complete” data are considered
to be Yci,cj

= {�fci,cj
, �Zci,cj

}, where �Zci,cj
= (Z1

ci,cj
, . . . , ZM

ci,cj
),

with:

Zk
ci,cj

=
{

1 if �fci,cj
belongs to class k

0 otherwise
(14)

constituting the “missing” data. In this paper, we do not con-
sider this approach, but the classi cation maximum likelihood
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approach (CML) [7]. The classi cation log-likelihood func-
tion is given by:

CL(Θ,Z,F) =
M∑

k=1

∑
�fci,cj

∈Pk

log
(
p(�fci,cj

|�αk)p(k)
)

where Z = {�Zci,cj
, i, j = 1, . . . , c} and P = {P1, . . . ,Pk}

is a partition ofF associated toZ: Pk = {�fci,cj
/Zk

ci,cj
= 1}.

In the classi cation approach of model-based clustering, the
maximization of the classi cation log-likelihood function is
based on the classi cation EM algorithm (CEM) [7]. Having
an initial partition P0, the iteration t of CEM is composed of
the following steps:

1. E-step: Compute Ẑ
k(t)
ci,cj :

Ẑk(t)
ci,cj

=
p(�fci,cj |�α(t−1)

k )p(k)(t−1)

∑M
k=1 p(�fci,cj

|�α(t−1)
k )p(k)(t−1)

(15)

2. C-Step: Assignment of the vectors �fci,cj
to clusters.

3. M-step: Update the parameter estimates for each com-
ponent j using the partition Pj according to:

p(k)(t) =
n

(t)
k

m2
(16)

�̂αk = argmax�αk

∑
�fci,cj

∈Pk

log
(
p(�fci,cj |�αk)p(k)

)

(17)

The quantity Ẑk
ci,cj

is the conditional probability that obser-
vation �fci,cj

belongs to class k (the posterior probability) and
nk is the number of vectors affected to cluster k. When max-
imizing Eq. 17, we do not obtain a closed-form solution for
the �αk parameters.
LetCL(�αk,Pk) =

∑
�fci,cj

∈Pk
log

(
p(�fci,cj |�αk)p(k)

)
. Then,

the partial derivative of CL(�αk,Pk) with respect to αkd is:

∂CL(�αk,Pk)
∂αkd

= nk

(
Ψ(

D∑
d=1

αkd) − Ψ(αkd)
)

(18)

+
∑

�fci,cj
∈Pk

(
Ψ(αkd + fd

ci,cj
) − Ψ(

D∑
d=1

(αkd + fd
ci,cj

))
)

and the estimation of αkd is based on the following iteration
scheme:

α
(t)
kd =

α
(t−1)
kd

( ∑
�fci,cj

∈Pk
Ψ(αkd + fd

ci,cj
) − nkΨ(αkd)

)
∑

�fci,cj
∈Pk

Ψ(
∑D

d=1(αkd + fd
ci,cj

)) − nkΨ(
∑D

d=1 αkd)
(19)

3.2. Complete Algorithm of Estimation and Selection

In order to determine the number of clusters, we have used
the integrated complete likelihood (ICL) criterion proposed
in [7]:

ICL(M) = CL(Θ,Z,X ) − Np

2
log N (20)

whereNp = M(d+2) is the number of free parameters in the
mixture model. Having the ICL criterion and the initialization
algorithm presented in [5] in hand, the complete algorithm for
estimation and selection is as the following:
Algorithm
For each candidate value ofM :

1. Apply the INITIALIZATION Algorithm [5].

2. E-Step: Compute the posterior probabilities Ẑ
(t)
ij using

Eq. 15

3. C-Step: Assignment of the vectors �Xi to clusters. The
classi cation of an observation �Xi is taken to be {k/Z∗

ik =
maxjZ

∗
ij}, which is the Bayes rule.

4. M-Step:

(a) Update the p(j)(t) using Eq. 16.

(b) Update the �α
(t)
j using Eq. 19

5. Calculate the associated criterion ICL(M ) using Eq. 20.

6. Select the optimal modelM∗ such that:

M∗ = arg maxMICL(M)

4. EXPERIMENTAL RESULTS

In order to validate our model, we use it for color images
summarization. Our summarization approach is based on a
classi er. The inputs to the classi er are images from differ-
ent image database classes. These images are separated into
unknown or test set of images, whose class is unknown, and
the training set of images, whose class is known. The training
set is necessary to adapt the classi er to each possible class
before the unknown set is submitted to the classi er. All the
input images are passed through the �Γci,cj

computation stage,
and then through the mixture’s parameters estimation and se-
lection stage, in which the spatial color information is mod-
eled as a Multinomial Dirichlet mixture. After this stage, each
class in the database is represented by a Multinimial Dirichlet
mixture. Finally, the classi cation stage uses mixtures esti-
mated from the unknown images to determine in which class
they will be assigned. The estimated mixture is compared to
the training mixtures by using the Battacharya distance be-
tween densities, D(I, ωj) =

∫
�C

√
p(�C|I)p(�C|ωj)d�C, where
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I and ωj index, respectively, a Multinimial Dirichlet mix-
ture for an image to be classi ed p(�C|I) and a Multinimial
Dirichlet mixture obtained from training and which represents
a class p(�C|ωj). Classi cation is performed using this rule:
image represented by the Multinimial Dirichlet mixture I is
assigned to class ωj1 if D(I, ωj) > D(I, ωj1) ∀j �= j1.
For our experiment, we used a database containing 12850 im-
ages. This database contains 10 classes (see Figure 1). We
divided the database on two sets. A data set containing 6425
images used for training. The remaining images were used for
testing. We considered the RGB space with color quantization
into 64 color and the set of distances D = {1, 3, 5, 7, 9, 11}.
The accuracy classi cation produced by our classi er was

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Sample images from each group.

measured by counting the number of misclassi ed images,
yielding a confusion matrix. The number of images misclas-
si ed when we used multinomial Dirichlet mixtures, was 637,
which represents an accuracy of 90.08 percent. In this case
of the multinomial mixture, the accuracy was 80.98 percent
(1222 misclassi ed images). Note that the accuracy improve-
ment when using multinomial Dirichlet mixture is statistically
signi cant as shown by a Student’s t-test. Figure 2 shows the
accuracy of the classi cation, when using the two mixtures,
as a function of the number of images in the training set. We
can see clearly that the accuracy increase as we add images in
the training set.

Fig. 2. Accuracy, using spatial color information, as a func-
tion of the number of images in the training set

5. SUMMARY AND CONCLUSIONS

Multinomial Dirichlet mixture models are an effective ap-
proach to model the spatial color information. The effective-
ness of the our model was shown experimentally through an
application which involves image databases summarization.
Future work can be devoted to the use of this model for ob-
jects modeling and recognition. Another interesting extension
of this model could be the use of the generalized Dirichlet
mixture [8] as a prior to the multinomial.
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