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ABSTRACT

The contextual relationships among different semantic conc-
epts provide important information for automatic concept det-
ection in images/videos. We propose a new context-based co-
ncept fusion (CBCF) method for semantic concept detection.
Our work includes two folds. (1) We model the inter-con-
ceptual relationships by a Conditional Random Field (CRF)
that improves detection results from independent detectors
by taking into account the inter-correlation among concepts.
CRF directly models the posterior probability of concept la-
bels and is more accurate for the discriminative concept de-
tection than previous statistical inferencing techniques. The
Boosted CRF framework is incorporated to further enhance
performance by combining the power of boosting with CRF.
(2) We develop an effective criterion to predict which con-
cepts may bene t from CBCF. As reported in previous works,
CBCF has inconsistent performance gain on different con-
cepts. With accurate prediction, computational and data re-
sources can be allocated to enhance concepts that are promi-
sing to gain performance. Evaluation on TRECVID2005 deve-
lopment set demonstrates the effectiveness of our algorithm.

Index Terms–image classi cation, image object detection

1. INTRODUCTION

Recognition of semantic information from visual content has
been an important goal for research in image/video indexing.
In recent years, NIST TRECVID video retrieval evaluation
has included a task in detecting high-level features, such as
locations, objects, people, and events from videos. Such high-
level features, termed concepts in this paper, have been found
to be very useful in improving quality of retrieval results in
searching broadcast news videos [10].

Semantic concepts usually do not occur in isolation - know-
ing the contextual information (e.g. “outdoor”) of an image
is expected to help detection of other concepts (e.g. “car”).
Based on this idea, several context-based concept detection
methods have been proposed, which can be classi ed into
two categories. The rst category tries to segment an image
into object regions (e.g. “building” or “road”) by consider-
ing object relationships. In [4] a hidden scene is detected,
and the correlation between global scene context and local
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objects is modeled to help object detection. In [9] a Condi-
tional Random Field (CRF) is used whose graph nodes are
pixels in the image. The graph structure is discriminatively
learned through the LogitBoost algorithm. These methods
have one-layer structures, where the system input is low-level
representations of images (e.g. color features) and the output
is the probabilities of object assignment for every pixel. The
second category aims at detecting concepts in the whole im-
ages/videos [5, 6, 7] in a two-layer structure. In the rst layer
independent concept detectors are applied to get posteriors of
class labels on a given image, and then in the second layer de-
tection results of each individual concept is updated through
a context-based model by taking into account detection con-
dence of other concepts. We refer to this kind of approach

as Context-Based Concept Fusion (CBCF), which is the main
issue we explore in this paper.

Several CBCF methods have been proposed. The Multi-
net method [5] represents inter-conceptual relations with a fa-
ctor graph where co-occurrences statistics of concepts are us-
ed as compatibility potentials. Posterior probabilities of conc-
epts are updated by loopy probability propagation. In [6], mo-
dels based on Bayesian Networks are used to capture the stat-
istical interdependence among concepts. Such techniques, th-
ough intuitive and effective in some cases, require a large am-
ount of data to estimate joint statistics and interdependence
of concepts. This makes the technique impractical in many
implementations. To avoid the dif culty of estimating gener-
ative distributions, the Discriminative Model Fusion (DMF)
method [7] uses support vector machine (SVM) as the context-
based model. A model vector comprising of detection scores
of independent detectors is fed to SVM to re ne the detection
result of each concept. However, results reported so far [1, 8]
have indicated that not all concepts bene ted from CBCF lea-
rning. The lack of consistent performance gain could be att-
ributed to several reasons: 1) insuf cient data for learning re-
liable relations among concepts, and 2) unreliable detectors.

In this paper we model the inter-conceptual relationships
by a CRF [3] (as shown in Fig.1). For each image I, CRF
takes as input the detection results, hI=[P̂ (y

1
I
=1|I), . . . ,P̂ (yM

I

=1|I)]T (yi
I
is the label for concept Ci), fromM independent

concept detectors, and produces updated marginal probabili-
ties P (yi

I
=1|I) of each concept Ci. CRF directly models the

conditional distributionP (yI|hI) of class labelyI given input
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observation hI, while the generative methods (e.g. Multinet
[5]) model the joint distributionP (yI,hI). When the training
set is limited, the discriminative CRF can better use the sam-
ple resources to model the distribution relevant to the discrim-
inative concept detection task than the generative approach.

To avoid the dif culty of designing compatibility poten-
tials in CRF, a discriminative objective function aiming at cl-
ass separation is directly optimized. The Boosted CRF frame-
work [9] is incorporated, and the Real AdaBoost algorithm[2]
is adopted to iteratively improve concept detection. SVM is
used as weak learner for boosting because of its excellent per-
formance found in TRECVID concept detection so far [10].
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Fig. 1. The CRF that models relationships among M concepts
C1, . . . ,CM . Concepts are related to each other, so the graph is full
connected. The CRF takes as input (black nodes) detection results,
P̂ (y1I=1|I), . . . , P̂ (yMI =1|I), fromM independent concept detec-
tors, and produces updated marginal probabilities P (yiI=1|I) (gray
nodes) of each Ci. yI=[y

1
I , . . . , y

i
I]
T is the vector of concept labels.

In addition, a simple but effective criterion is proposed to
predict which concepts will bene t from CBCF, based on both
information theoretic and heuristic rules. This criterion takes
into consideration both the strength of relationships between a
concept and its neighborhood and the robustness of detections
of this neighborhood. In our experiment the prediction accu-
racy is 81% when 26 (out of 39) concepts are selected. The
accurate prediction scheme allows us to use CBCF in practice,
applying it only when it is likely to be effective.

The proposed algorithm is called Boosted CRF–Concept
Fusion (BCRF-CF). As will be shown in Sec.2 traditional
DMF [7] corresponds to the initial stage of BCRF-CF. We
will also show that the extended iterative steps introduced in
our method further improve the performance. Experiments
are carried out over TRECVID 2005 development set [10] (80
hours, 137 video clips). Out of 39 concepts, 26 are automat-
ically chosen to use context-based fusion among which 21
indeed get noticeable performance gain. Compared with in-
dependent detectors, BCRF-CF improves the MAP by 6.8%
on a relative basis, and performance gains for several concepts
are signi cant, e.g., 1221% for “of ce”.

2. BOOSTED CRF CONCEPT FUSION
We start by de ning notations. Let C1, . . . ,CM be M conce-
pts and D be the set of training data {(I,yI)}. Each I is
an image and yI = {y1

I
, . . . , yM

I
} is the vector of concept

labels, where yi
I
=+1 or −1 denoting the presence or ab-

sence of concept Ci in I respectively. In the CBCF scenario,

for each I the observations (system inputs) are the posteriors
hI=[h

1
I
, . . . , hM

I
]T , hi

I
=P̂ (yi

I
= 1|I), generated by indepen-

dent concept detectors. Our goal is to feed these inputs into an
inferencingmodel to get improved posterior probilityP (yI|I)
by taking into account inter-conceptual relationships.

The posterior P (y|hI) can be modeled by a CRF [3] as:

P (yI|hI)=
1

Z
e
�M
i=1φi(y

i
I
,hI)+

�M
i=1

�M
j=1,j �=iψij(y

i
I
,y
j
I
,hI)

Z is a normalizing constant; φi(yiI,hI) and ψij(yiI, y
j
I
,hI) are

the local and compatibility potentials respectively. One is-
sue of CRF modeling is the design of potential functions.
φi(y

i
I
,hI) is a local decision term which in uences the posteri-

ors of conceptCi independent of its neighbors. Compatibility
potentials ψij(yiI, y

j
I
,hI) are generally used to specify heuris-

tic constraints for relationships between pairs of nodes, e.g.
spatially smoothing constraints in image segmentation [3].
However in our problem it is unclear what kind of relation-
ship among concept nodes we should adopt, and it is dif cult
to de ne appropriate compatibility potentials. In this paper
we incorporate the Boosted CRF framework proposed in [9]
which directly optimizes a discriminative objective function
based on CRF and avoid the design of compatibility poten-
tials. In the next subsections we will introduce the Boosted
CRF framework [9], followed by our BCRF-CF algorithm.

2.1. Boosted CRF
After the inference with CRF the belief bi

I
on each node Ci

is used to approximate the posterior: P (yi
I
=±1|I)≈ bi

I
(±1).

The aim of CRF modeling is to minimize the total loss J for
all concepts over all training data:

J= −
�

I∈D

�M

i=1
biI(+1)(1+y

i
I
)/2biI(−1)(1−y

i
I
)/2 (1)

Eqn(1) is an intuitive function: the minimizer of J favors th-
ose posteriors close to training labels. Moreover we have [9]:

log J =
�

I∈D

�M

i=1
log
�
1+e−y

i
I
(F i

I
+Gi

I
)
�
=
�M

i=1
log J̃i (2)

where logJ̃i=
∑

I∈D
log[1+e−y

i
I
(F i

I
+Gi

I
)]; F i

I
is a discriminant

function (e.g. a logistic regression stump) taking input hI =
[h1

I
, . . . ,hM

I
]T . Gi

I
is a discriminant function whose input is

belief bi
I
=[b1

I
(+1), . . . ,bi−1

I
(+1),bi+1

I
(+1),. . . ,bM

I
(+1)]T , where:

biI(+1) = 1/(1 + e−(F
i
I
+Gi

I)) (3)

In [9], by assuming additive models: F i
I
(T )=

∑T
t=1f

i
I
(t), and

Gi
I
(T )=

∑T
t=1g

i
I
(t), LogitBoost is used to iteratively optimize

logJ , with bi
I

being updated in each iteration. Logistic re-
gression stumps are used as weak learners for f i

I
(t) and gi

I
(t).

2.2. Boosted CRF–Concept Fusion
Motivated by Ref.[9] we avoid designing compatibility poten-
tials (which are very dif cult to obtain in our problem as de-
scribed earlier) by optimizing the discriminative objective fu-
nction Eqn(2) with a BCRF-CF algorithm. Our BCRF-CF are
different from the original Boosted CRF [9] in two aspects.

First, SVM classi ers are used instead of logistic regres-
sion stumps because of the following three reasons. (1) As
discussed in [9] linear regression would work well when the
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graph was densely connected, i.e., there were a large number
of nodes (pixels in [9]). But the number of nodes (concepts)
in our graph is small. Thus the linear approximation of the
discriminant function Gi

I
made in [9] may be not valid any-

more. More complex function should be assumed forGi
I
, e.g.,

the nonlinear discriminant function from kernel-based SVM.
(2) In our CBCF problem, the training data is usually highly
biased (the positive training samples for a concept are much
less than the negative ones), and SVM is more adaptive to this
biased classi cation problem than logistic regression because
of the use of support vectors. (3) Previous literatures indicate
that SVM generally performs well in semantic concept de-
tection for TRECVID data set [1, 8], because it shows good
generalization ability with limited training data.

Second, the Real AdaBoost algorithm is adopted instead of
LogitBoost in [9]. LogitBoost uses logistic regression stumps
as weak learners, but instead we adopt the general Real Ad-
aBoost [2] so that we can use other weak learners, including
SVM. Speci cally, the solution of minimizing log J̃i coin-
cides with the solution of minimizing the following Qi [2]:

Qi =
�

I∈D
e−y

i
I
Γi
I , ΓiI =

�
F iI +G

i
I

�
/2 (4)

Qi is exactly the objective function of Real AdaBoost [2] with
the following additive model: Γi

I
(T ) =

∑T
t=1γ

i
I
(t), γi

I
(t) =(

f i
I
(t)+gi

I
(t)

)
/2. That is, during each iteration t, f i

I
(t) is the

discriminant function generated based on input hI; giI(t) is
the discriminant function generated based on the current be-
liefs bi

I
(t). γti,I is the overall discriminant function, obtained

by averaging f i
I
(t) and gi

I
(t).

The detailed BCRF-CF algorithm is given in Fig.2. The
initial step of BCRF-CF is exactly the DMF approach pro-
posed in [7]. As we will see in the experiments, this DMF
method gets performance improvement in some concepts while
degrading performance in many other concepts, and our boost-
ing process can avoid this problem and achieve more consis-
tent improvements.

3. WHICH CONCEPTS TO UPDATE

Not all concepts bene t from CBCF. As shown in [1], only 8
out of 17 concepts gained performance. Although experiments
in [8] showed improvements on 80 (out of 101) concepts,
our baseline independent detectors are relatively stronger than
theirs, e.g., our baseline detector get 61% average precision
on “car”, while theirs get only 25%. Our strong independent
detectors make it dif cult to show improvements from CBCF.

Intuitively, two reasons may cause performance deterio-
ration using CBCF: (1) the concept has weak relations with
other concepts; (2) the related concepts have poor indepen-
dent detectors. This suggests an intuitive criterion: concept
Ci should use CBCF learning when Ci is strongly related to
other concepts, and the average performance of detectors of
the related concepts is strong. In other words, when a concept
has a very strong independent detector and very poor neigh-
borhood, it will not use CBCF. Speci cally, the relationship
between Ci and Cj can be measured by their mutual infor-

Input: training set D; posteriors hI from independent detectors.
• Initialization:

For each concept Ci:
– Train SVM classi er H0

i based on hI; get p0(yi
I
=1|I)

– Set γi
I
(0)← 1

2
log

p0(yi
I
=1|I)

1−p0(yi
I
=1|I)

; Γi
I
(0)=γi

I
(0);

bi
I
(+1, 0)=1/(1+ e−Γi

I
(0)); wi

I
(0)=exp[−yi

I
γi
I
(0)]

• For t = 1, . . . , T
For each concept Ci:

– Form a new training data set D̃ with size |D| by sampling the
original set D according to sample weights wi

I
(t−1).

– Train SVM classi ers Hif (t) and Hig (t) based on D̃, with hI

and bi
I
(t) respectively. Get the corresponding class probabil-

ity estimation ptf (y
i
I
= 1|I) and ptg(y

i
I
= 1|I), and also get
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i
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�
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; γi
I
(t)=(f i
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– Update Γi
I
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I
(t); bi
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(+1,t)=1/(1+ e−2Γ

i
I
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wi
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Fig. 2. The BCRF-CF algorithm.

mation I(Ci;Cj), which re ects how much information one
concept can get from another. The detection error Ei of the
independent detector for Ci is used to estimate its robustness.
Our criterion for applying CBCF learning to concept Ci is:

Ei > λ or

�
j:j∈Ni

I(Ci;Cj)Ej�
j:j∈Ni

I(Ci;Cj)
< β (5)

The co-occurrence statistics of conceptsCi andCj in the trai-
ning set is calculated to approximate probability P (Ci,Cj),
based on which I(Ci;Cj) is computed. Note that concept co-
occurrence is a very rough approximation of P(Ci,Cj), espec-
ially with limited samples. Lack of accurate estimation of
joint statistics P(Ci,Cj) is often the main reason that prior
methods of concept fusion (e.g., [5]) fail, since the estimation
error may accumulate during the iterative inferencing process.
However such approximation may be suf cient for the pur-
pose of simple concept prediction, where estimations of joint
probabilities, though approximate, are not used in any iter-
ative fusion process. Empirical experiments also verify the
effectiveness of Eqn(5).

4. EXPERIMENTS

Experiments are carried out on TRECVID 2005 development
set [10], which contains 137 broadcast news videos and has
been labeled with 39 concepts from LSCOM-Lite ontology
[10]. It is separated into 2 training sets T , D and 1 test set,
as shown in Table 1. Independent concept detectors are SVM-
based classi ers over simple image features such as grid color
features and texture, extracted from key frames of a video
subshot. Such classi ers have been shown to be effective for
detecting generic concepts [1]. Outputs of SVMs are con-
verted into probabilities through a standard sigmoid function.
4.1. Performance Evaluation
First, we empirically set λ=0.95, β=0.7 in the concept pre-
diction criterion Eqn(5), and 26 concepts are automatically
selected (shown in Fig.3) to use BCRF-CF learning. Fig.3
gives the MAP (the averaged AP over all the selected con-
cepts, and AP is the of cial TRECVID performance metric
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Table 1. The data sets for experiments
Name Size Usage

training set T 41837 subshots train independent detectors
training set D 13547 subshots train Boosted CRF model

test set 6507 subshots evaluation

which related to the multi-point average precision value of a
precision-recall curve) comparison of BCRF-CF, DMF, and
original independent detectors, through 10 iterations over the
selected 26 concepts. The gure indicates that both CBCF
methods, i.e., BCRF-CF and DMF, improve the overall MAP.
DMF corresponds to the initial stage of our BCRF-CF and can
achieve 2.6% performance gain. Our BCRF-CF can further
enhance the initial DMF performance in successive boosting
iterations with 4.2% MAP gain after 10 iterations. The per-
formance improvement in MAP obtained by our BCRF-CF is
6.8% compared with the baseline independent detectors.
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Fig. 3. The MAP comparison, averaged over 26 selected concepts.

Fig.4 gives individual AP of our BCRF-CF, the DMF and
the independent detectors (after 10 iterations) over the se-
lected 26 concepts. DMF obtains performance improvements
over 15 concepts, while degrading detection results on the
other 11 concepts. The performance deterioration over sev-
eral concepts are severe, e.g., 8.1% in “vegetation” and 23.6%
in “walking-running”. Our BCRF-CF algorithm can achieve
performance improvement over 21 concepts and avoid sig-
ni cant performance degradation over many concepts. For
example, BCRF-CF improves the performance of DMF by
13% and 39% for ”vegetation” and ”walking-running” re-
spectively. Generally speaking, BCRF-CF can further im-
prove the performance of DMF, and detection results of BCRF-
CF is more stable than DMF. Compared with independent de-
tectors, signi cant AP improvement is achieved by BCRF-CF
for some concepts, e.g., 1221% for “of ce”.
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Fig. 4. The individual AP comparison.

We have also compared Real AdaBoost with LogitBoost
(used in the original Boost CRF method [9] as discussed in

Sec.2.1). Results con rmed the superiority of the adopted
Real AdaBoost method, with 55% performance difference in
terms of MAP over the 39 concepts.
4.2. Evaluation with Different Parameters
Here we evaluate the performance of detection with different
β in Eqn(5), since we nd β is the most sensitive parame-
ter for concept prediction. By varying β different concepts
are selected to use BCRF-CF. Let’s de ne the precision of
the concept selection as the percentage of concepts that ac-
tually have performance gain among selected concepts. Ta-
ble 2 shows the precision and MAP gain of BCRF-CF after
10 iterations over the selected concepts with β = 1, 0.7, 0.4
respectively. Such results are promising and can be used to
achieve the highest performance-cost ratio tradeoff. If we
don’t do concept selection, only 59% of concepts get per-
formance improvement. When 26 concepts are selected, 21
concepts (86%) indeed get performance improvement with a
gap of 6.8% in MAP. With concept selection, computational
resources can be allocated to enhance concepts that have best
chance to gain performance improvement.

Table 2. Performance of detection with different β
β precision MAP gain # of selected concepts
1 59% 2.2% 39 (all the concepts)

0.7 81% 6.8% 26
0.4 91% 10.4% 11

5. CONCLUSIONS
We propose to model the inter-conceptual relations by a CRF
which takes as input detection results from independent detec-
tors and computes updatedmarginal probabilities as improved
detection results. A modi ed Boosted CRF framework over
SVM classi ers is incorporated to optimize the discriminative
objective function and avoid the dif culty of designing com-
patibility potentials. A simple but effective concept selection
criterion is developed to predict which concepts will bene t
from CBCF. Experimental results on TRECVID 2005 devel-
opment set proves the effectiveness of our BCRF-CF method
and concept prediction method.
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