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ABSTRACT
Visual tracking has been a challenging problem in computer vision
over the decades. The applications of visual tracking are far-reaching,
ranging from surveillance and monitoring to smart rooms. In this pa-
per we present a novel object tracker based on fast learning Radial
Basis Function (RBF) networks. Here, the object and background
pixel-based color features are used to develop object/non-object RBF
classi ers. The posterior probability information of these classi-
ers are used for developing an ef cient object model for track-
ing in the subsequent frames. The performance of the proposed
tracker is tested with many video sequences of real-life complexity
and compared against the color-based mean-shift tracker. The pro-
posed tracker is illustrated to be suitable for real-time robust object
tracking due to its low computational complexity.

Index Terms— Visual Tracking, Neural Networks, RBF-Neural
Networks, Object Tracking

1. INTRODUCTION

The objective of object tracking is to faithfully locate the targets in
successive video frames. The major challenges encountered in visual
tracking are cluttered background, noise, change in illumination, oc-
clusion and scale/appearance change of the objects. Considerable
work has already been done in visual tracking to address the afore-
mentioned challenges [1].

In the last few decades, neural networks have been successfully
used in a number of applications such as pattern recognition, remote
sensing, dynamic modeling and control and medicine [2, 3, 4]. The
increasing popularity of neural networks in many elds is mainly
due to their ability to learn the complex nonlinear mapping between
the input-output data and generalize them. Also, neural networks
make no prior assumption about the statistics of input data and can
construct complex decision boundaries [5]. These properties makes
neural network an attractive mathematical tool to many practical
problems. As one of the most popular neural network models, radial
basis function network attracts lots of attentions on the improvement
of its approximation ability as well as the construction of its archi-
tecture.

In neural network learning algorithms [6, 7], gradient search
methodology has been widely used for network parameters update.
Hence, the learning process is computationally intensive and may
require several hours to train the network. Also, one has to select
proper learning parameters (learning rate and epoch) to avoid local
minima problems. Higher training time and issues in learning pa-
rameter selections leads to development of an alternative algorithm
which can be implemented real time. Recently in [8], fast learning
neural algorithm called ‘Extreme Learning Machine’ (ELM) is pre-
sented for a single hidden layer neural network (SLFN).

In fast learning algorithm [9], it is shown that for SLFN with
radial basis function, the random selection of centers and width’s
of hidden neurons and analytically calculated output weight can ap-
proximate any continuous function to desirable accuracy. This al-
gorithm overcomes many issues in traditional gradient algorithms
such as stopping criterion, learning rate, number of epochs and local
minima. Since the algorithm is computationally less intensive and
has good generalization ability, it is suitable for real time applica-
tions. In fact, the performance of fast learning algorithm on many
real world problems have been compared with the other neural net-
work approaches in [8] and its performance has been found to be
better.

Learning-based tracking algorithms were rarely used for general
purpose object tracking [10]. This is due to the dif culty in adapting
the neural networks for tracking purpose. Adapting a tracking prob-
lem into a classi cation problem gives a wider scope for modeling
the objects using neural networks. Hence in this paper, we propose a
novel robust object tracking algorithm using fast learning RBF net-
works. The object model is developed using two RBF classi ers
namely object and non-object. The features used for building RBF
classi ers are simple color features. The posterior probability esti-
mated by the neural network is used for target model development
[11]. The target localization is achieved by recursively maximizing
the posterior probability estimated by the RBF networks. The per-
formance of the tracker is tested with challenging video sequences
and compared against the well known mean-shift tracker.

The paper is organized as follows: Section 2 describes the overview
of the proposed tracker. Section 3 presents the details of main system
modules such as object background separation, feature extraction,
objet modeling. The basics of RBF network for modeling the object
is presented in section 4. Experimental results and discussions are
presented in Section 5. Finally, Section 6 concludes the paper.

2. SYSTEM OVERVIEW

In this paper we present a novel object tracker using RBF networks.
The RBF network is trained for classifying object and non-object
(background) pixels. The color and location information of every
object and surrounding background pixels are used as features for
training the network. The training process uses fast learning algo-
rithm [8] and it incurs very low computational effort to develop the
neural classi ers. The posterior probabilities of the classi ers are
used to develop an ef cient object model. Fig. 1(a) illustrates the de-
velopment of object model using RBF networks. Initially the object
of interest is localized by the user by drawing a rectangle around it.
The object-background separation module separates the object from
the surrounding background pixels by estimating the likelihood map.
The feature extraction module, extracts the basic color information
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Fig. 1. (a) Object Model development : Training phase (b) Object
tracking : Testing Phase.

of the labeled object and background pixels. The object and non-
object classi er were tuned to maximize classi cation accuracy for
object and background pixels correspondingly. Only the probability
information of reliable object pixels, which are classi ed as object
in both classi ers, are used for building target object model. The
tracking phase is illustrated in Fig. 1(b). Object localization starts at
the center of the object window in the frame where it was previously
tracked. In order to nd the object pixels, the extracted features from
this location are tested with both object and non-object classi ers.
The displacement of the object is given by the shift in centroid of the
object pixels. The object location is iteratively shifted and tested un-
til the convergence. The cumulative displacement indicates the shift
in object location for the current frame.

3. RBF NETWORKS-BASED OBJECT TRACKER

The following subsections explain the main modules of the pro-
posed RBF Networks-based tracking system. In the following sub-
section, we detail the procedure for separating the foreground and
background pixels.

3.1. Object-background separation

Ef cient object tracking heavily depends on how well the object is
modeled free from background pixels. In order to obtain a reliable
object model, we separate the object region from the surrounding
background in the rst frame of the video sequence. The object-
background separation is used for labeling the object and background
pixels. The R-G-B based joint probability density function (pdf) of
the object region and that of a neighborhood surrounding the ob-
ject is obtained. This process is illustrated in Fig. 2. The region
within the red rectangle is used to obtain the object pdf and the
region between the green and red rectangles is used for obtaining
the background pdf [12]. The resulting log-likelihood ratio of fore-
ground/background region is used to determine object pixels. The
log-likelihood of a pixel considered within the outer bounding rec-
tangle is (green rectangle in Fig. 2) obtained as

Li = log
max{ho(i), ε}
max{hb(i), ε} (1)

where ho(i) and hb(i) are the probabilities of ith pixel belonging
to the object and background respectively; and ε is a small non-zero
value to avoid numerical instability. The non-linear log-likelihood

(a) (b) (c)

Fig. 2. (a) Initial frame with object boundary (b) likelihood map L
(c) Mask obtained after morphological operations (T ).

maps the multimodal object/background distribution as positive val-
ues for colors associated with foreground and negative values for
background. The binary weighting factorM for ith pixel is

Mi =

�
1 if Li > τo

0 otherwise (2)

where, τo is the threshold to decide on the most reliable object pixels.
Once the object is localized, by user interaction or detection in the
rst frame, the likelihood map of the object/background is obtained
using (2). In our experiments, τo is set at 0.8.

3.2. Feature Extraction

Feature extraction is one of the computationally intensive modules
in most of the classi cation problems. In order to perform object
tracking in realtime we need to extract features that can distinguish
classes effectively and incurs minimal computational load. In the
proposed tracker the feature used for modeling the object are simple
pixel color based features. The pixel-based color features such as
R-G-B and Y-Cb-Cr are extracted from the given video frame.

4. RADIAL BASIS FUNCTION BASED OBJECT MODEL

In this paper, the object model development is converted to a clas-
si cation of object pixels from the non-object (background) pixels.
The object model is developed using two radial basis function (RBF)
classi ers, namely ‘Object Classi er’ and ‘Non-object Classi er’.
Here, the object RBF classi er is developed such that it maximizes
the classi cation of number of object pixels in the region of interest.
Similarly, the non-object RBF classi er maximizes the classi cation
of number of non-object pixels.

In general, a two-class problem can be stated in the following
manner. Suppose, we have the N observation samples {Ui, Ti}N

i=1,
where Ui = [ui1, · · · , uid] ∈ �d is a d-dimensional feature of ith
sample and Ti ∈ {−1, +1} is its coded class label. If sample Ui is
assigned to object class then Ti is one otherwise (background class)
it is −1. The objective of the classi cation problem is to estimate
the functional relationship between the random samples and its class
labels from the known set of data. Here, we use radial basis function
classi ers developed using fast learning algorithm [9] to approxi-
mate the functional relationship.

It has been proved in literature that the neural network based
classi er model developed using mean square error loss function can
approximate the posterior probability very well [11]. Since, the fast
learning algorithm also uses least square estimate to minimize the
error, the output of RBF network approximates the posterior proba-
bility. The posterior probability of pixel Ui obtained using the object
classi er is

p̂o (Ui|c) ≈ max(min(Ŷ , 1),−1) + 1

2
(3)
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Similarly, the posterior probability of object pixel Ui obtained using
the non-object classi er is

p̂b (Ui|c) ≈
�

1 − max(min(Ŷ , 1),−1) + 1

2

�
(4)

Here, two classi ers are used to estimate the posterior probabil-
ity of the object pixels reliably. Since, ‘object classi er’ maximizes
the number of object pixels, it might include some of the background
pixels as object. Similarly, the ‘non-object classi er’ might include
some object pixels as background. The objective here is to identify
the object pixels with high con dence. Hence, we neglect the pixels
which are assigned different class labels by object and non-object
classi ers. The posterior probability of these two classi ers are used
to obtain the object model p̂t as given below.

p̂t (Ui|c) = min [p̂o, p̂b] (5)

The posterior probability of the target model is used for localizing
object in the subsequent frames.

4.1. Fast Learning Radial Basis Function Classi er

In this section, we present a brief overview of the fast learning algo-
rithm for radial basis function network [9]. Radial basis function net-
work is three layered feed-forward network. The rst layer is linear
and only distributes the input signal, while the next layer is nonlinear
and uses Gaussian functions. The third layer linearly combines the
Gaussian outputs.

Using universal approximation property, one can say that the
single hidden layer feed-forward network with suf cient number of
hidden neurons can approximate any function to any arbitrary level
of accuracy. Let μi ∈ �d and σi ∈ �+ be the center and width of
ith Gaussian hidden neuron, α be 1 × K the output weights and N

be the number of pixels. The output (Ŷ ) of RBF network with K
neurons has the following form:

Ŷ =

K�
j=1

αj exp

�−‖U − μj‖
σj

�
, (6)

Equation (6) can be written in matrix form as

Ŷ = α YH (7)

Here, YH (is of dimensionK ×N ) is called the hidden layer output
matrix of the neural network; the ith row of YH is the ith hidden neu-
ron output with respect to inputs U1, U2, · · · , UN . For most of the
practical problems, it is assumed that the number of hidden neurons
are always less than of number of training samples. In fast learning
algorithm, for a given number of hidden neurons (K), it is assumed
that the center μ and width σ of hidden neurons are selected ran-
domly. The output weights are estimated analytically as

α = TY †
H (8)

where Y †
H is the Moore-Penrose generalized pseudo-inverse of YH .

The network output Ŷ is used for estimating the posterior probability
(p̂k) using equations (3)-(5).

(a) (b) (c)

Fig. 3. Posterior probability of pixels for a given object window. (a)
Object Classi er (b) Non-object Classi er (c) Object Model.

4.2. Object Localization

In this section we explain the development of object model from
RBF classi ers and object localization based on the estimated poste-
rior probability. The posterior probability of the current object win-
dow estimated by the object and non-object classi ers for the ob-
ject window (starting frame) of PETS video sequence are shown in
Fig. 3(a)-(b) respectively. The corresponding classi cation matrix
are given below.

Co =

�
730 47
38 358

�
Cb =

�
747 69
21 336

�
(9)

From (9), we can observe that, object classi er maximizes the clas-
si cation accuracy for object class (Co(2, 2) = 358 > Cb(2, 2) =
336). Similarly non-object classi er maximizes the classi cation
accuracy for the background class (Cb(1, 1) = 747 > Co(1, 1) =
730). The object model (p̂t) is developed using (5) and is shown in
Fig. 3(c). This target model uses only reliable object pixels which
are classi ed as object in both classi ers.

Let Xk
c be the object center, Xk

i be the candidate pixel loca-
tions (centered around Xk

c ) and p̂k
c (i) be the corresponding poste-

rior probability of ith candidate pixel at kth iteration. The posterior
probability at kth iteration (p̂k

c ) is obtained by testing the features ob-
tained from locationsXk

i . Now the new location of the object center
is estimated as the centroid of posterior probability (p̂k

c ) weighted by
target model (p̂t).

Xk+1
c =

�
i Xk

i p̂k
c (i)p̂t(i)�

i p̂k
c (i)p̂t(i)

(10)

The iteration is terminated when the change in centroid location for
any two consecutive iteration falls below a threshold ts. Typical
value of ts used in our experiments is in the range of 0-2.

4.3. RBF-Networks Based Tracker Algorithm

1. Select the object to be tracked in the initial frame by selecting
a rectangle window around it.

2. Separate the object from background based on the object like-
lihood map.

3. Extract the object and background features from the labeled
object and neighboring background pixels.

4. Obtain the object model using the RBF- network.
5. Test for object in the next frame starting from the previously
obtained object location.

6. Recursively obtain the object location for the current frame
using (10).

7. Go to step 5.
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Fig. 4. Tracking result of proposed system (solid yellow) against
mean-shift (dashed blue) tracker for ‘train’ sequence. Frames shown
1, 10, 30, 60, 100 and 150.

5. EXPERIMENTS AND DISCUSSIONS

The proposed algorithm has been tested on several complex video
sequences. The ’train’ and ’walk’ videos used in our experiments
are shot by a handheld camcorder, and hence include a wide variety
of camera operations. For example the train sequence contains lots
of jerky motion with camera pan, tilt and zoom operations. We have
compared the performance of the proposed tracker against the mean-
shift (MS) tracker [13], which is known for robust object tracking
in cluttered environment. Fig. 4 shows the tracking result for the
proposed and MS tracker for a toy train moving in a cluttered back-
ground. Though both the proposed and the mean-shift tracker tracks
the object, the accuracy of the MS tracker degrades very much dur-
ing large displacement of the object due to camera panning opera-
tion. The last 2 frames of Fig. 4 shows how the accuracy of MS
tracker reduces with camera zoom-out operation. The proposed al-
gorithm tracks the object with a better precision during the afore-
mentioned camera operations. Fig. 5 shows the tracking results for
a PETS sequence. The proposed algorithm tracks the object through
out the sequence with better accuracy compared to the MS algo-
rithm. The MS tracker fails at the end part of the sequence. The
proposed tracker has been tested for various speeds by temporally
downsampling the video. For example the result shown in Fig. 5
is for downsampling factor 4. These results clearly show that the
fast learning neural networks are well suited for tracking objects in
real-world scenario. Further, the RBF tracker uses, on an average,
1-2 iteration to localize the object and the computational effort re-
quired to calculate the posterior probabilities in the testing phase is
negligible. Hence the proposed tracker is suitable for real-time ap-
plications.

6. CONCLUSIONS

In this paper we have proposed an object tracker using RBF-networks.
The fast learning algorithm is used to develop the object model at
the initial frame using two RBF classi ers. The object localization
is achieved using the target model and the posterior probability of
the current object window. The performance of the proposed tracker
is compared with the well-known MS tracker for various complex
video sequences. The proposed tracker provides better tracking ac-
curacy compared to MS tracker. Since the testing phase of RBF
network incurs very low computational burden, the proposed tracker
is suitable for real-time applications.

Fig. 5. Tracking result of proposed system (solid yellow) against
mean-shift (dashed blue) tracker for ‘pets’ sequence.
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