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ABSTRACT
In this paper we developed a system for automated human 
body tracking and modeling based on a monocular camera. 
In this system, eleven joint points including head, shoulder, 
hip, elbows, knees, hands and feet are extracted separately 
to build a 2D human body model. The head is extracted by 
analyzing negative minimum curvature (NMC) points on a 
parameterized silhouette. The torso, along with its angle 
and size, is determined by integrating multiple frame 
information with connectivity constraint. Hands and feet 
can be identified correctly based on a modified star skeleton 
approach and the nearest-neighbor tracking mechanism. 
The rest of joint points can also be located by taking 
advantage of the connectivity constraints. A successful 
construction of the proposed human body modeling will 
pave a critical foundation for further intelligent analysis in 
many applications, such as automated video surveillance 
system or systematic video understanding. 

Index terms: Human body modeling, negative minimum 
points, intelligent analysis

1. INTRODUCTION 
In this paper, we develop an automated human body 
extraction and behavior analysis system for video 
surveillance and video understanding/analysis applications. 
Usually a human body can be approximately represented by 
several parts such as head, torso, and limbs with some 
joints like shoulders, elbows, hips and knees. Recently 
Gavrila [1] provides a comprehensive survey and divides 
this research field into three categories: 2D approaches 
without shape models, 2D approaches with shape models 
and 3D model approaches. Research proposed by Viola et 
al. [2] belongs to the first category. They integrate image 
intensity information with motion information to detect 
walking pedestrians. One approach in the second category 
model a person based on a single 2D image [3] . The others 

are based on body part tracking techniques, either using one 
single body part [4] or the whole body [5]. 
The challenge on shape-based human modeling approach is 
that human limbs are often mis-detected due to the self-
occlusion or occluded by other scene objects. A fast and 
simple approach to extract limbs end from silhouette is star 
skeletonization [6],  which identifies the extremities on the 
contour boundary and connects them with centroid of 
gravity (CoG). Due to the self-occlusion problem, the 
extremities are not always five, not to mention some false 
positives are included and confuse the limbs end 
extraction.Furthermore, the star skeleton is not  a good 
match for the real human model when they bend their limbs. 
Therefore, in this paper we propose an innovative approach 
to  construct a more reliable  body model from video. Our 
approach starts by finding two important joint points: 
shoulder and hip after locating the head based on curvature 
analysis. In the meanwhile, we integrate multiple frames 
information to identify the extremities as hands or feet. 
Moreover, we employ a notion called “connectivity energy” 
to locate the elbow and knee joint points. A complete 
human model can thus be effectively built for behavior 
recognition and analysis purpose. 
The rest of the paper is organized as follows: Section 2 
discusses our techniques for video object extraction, head 
and torso extraction, limbs tracking and association, and 
joint points locating to build a complete model. Section 3 
shows the performance evaluation about our modeling 
mechanism followed by the Conclusions in Section 4. 

2. AUTOMATIC HUMAN BODY MODELING 
SYSTEM

Figure 1 shows the system framework on our automatic 
human body parts extraction/tracking system which starts 
with a background subtraction to obtain the video object, a 
negative minimum curvature (NMC) based cuts generation, 
head and torso extraction, extremities extraction and limbs 
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tracking and modeling. Details of these modules are given 
in the following subsections. 

Figure 1: the flowchart of the system. 

2.1. Video Object (VO) Extraction 
Video objects (VOs) can be extracted by employing the 
background subtraction algorithm. Each image frame is 
subtracted from the background image to obtain the 
difference image.  The fourth order moment of each pixel in 
the background difference image is calculated using the 
following equation [7]:  
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where ),( yx  denotes a window of size N . Each pixel 

),( yx  in the temporal difference image is thresholded 
based on ),()4( yxd

. Afterwards, some morphological 
operations (opening and closing) are performed to get rid of 
noises.

With a fixed camera and indoor environment, the 
background subtraction algorithm performs reasonably good 
segmentation after refinement by   morphological post 
processing. 

2.2. Human Body Model 
A 2D human body model used in our experiments is shown 
in Figure 2. It is composed of 11 parts which are head, 
shoulder, hip, elbows, knees, hands and feet. How to 
decompose automatically a human body into these parts has 
become a challenging issue. Hoffman and Richards [8] 
propose an idea of transversality which is formulated as the 
following rule: Points of maximally concave extrema, or 
technically called negative minimum curvature (NMC) 
points, are good candidates for part-boundaries. Siddiqi and 
Kimia [9] propose two rules, Limbs and Necks, for fitting 
body parts into silhouette shapes. Considering all human 
body parts the head is the easiest one to locate and segment. 
In this paper we only perform the neck rule of NMC on 

head acquisition because the head and the torso can be 
treated as a near-rigid object thus we can usually get a cut 
to separate the head and the torso. 

Figure 2:  2D human body model 

2.3. Head and Torso Acquisition 
After VO extraction the human silhouette is obtained (see 
Figure 3-b) and the NMC points can be obtained by 
computing the second order partial derivatives on the 
extracted contour boundary . Unfortunately the zigzag 
silhouette results due to imperfect VO segmentation contain 
plenty of false NMC points. Therefore we first use the 
cubic B-spline interpolation [10] to transform the discrete 
boundary data to continuous data (see Figure 3-c). The 
NMC points can be easily obtained by computing the 
second order partial derivatives on the parameterized 
silhouette (Figure 3-d). Then we employ the necks rule on 
these NMC points to create cuts through these NMC points 
and segment the VO into several sub-regions (Figure 3-e). 
We have to decide which sub-region is the head region of 
the first frame, which can then be used for the subsequent 
frame head tracking purpose. Among these sub-regions we 
compute the major and minor axis of each sub-region. 
Because the head is roughly in round shape, we choose the 
sub-region whose ratio of major and minor axis is closest to 
1. Figure 3-f shows the results of the final extracted head 
region. Subregions of the rest of frames can be determined 
as the head region or not by using Kalman Filter tracking 
[11]. 

2.4. Torso Extraction 
After obtaining the head region, the location and the length 
of the torso can be inferred by taking advantage of head 
coordinates. We use an intuitive definition called 
“connectivity” which means two points belong to the same 
region if you can make a straight line between them without 
intersecting any silhouette boundaries. A connectivity 
energy function is defined as follow: 
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(a) (b) (c)

(d) (e) (f)

Figure 3: Examples of head acquisition results. (a) Original 
image (b) discrete contour (c) B-spline interpolation (d) 
NMC points (e) cuts which are employed necks rule on 
NMC points (f) head region. 

where D is the Euclidean distance function. The 
connectivity information can tell us whether two points 
belong to the same body parts or not and this information is 
also applied on our joint points finding. Due to the 
kinematic constraint of degree of freedom (DOF), the 
motion of the head is limited in a small range. As shown in 
Figure 4-a, if we try to find the largest connectivity 
energy from the centroid of the head to the contour 
boundary, this line will most likely pass through the torso 
part. After obtaining this line we set the head centroid as the 
center, align (rotate) all VO images to make this line 
perpendicular to the ground plane, sum them together to 
produce a gesture map (see Figure 4-b) and a clean torso 
region can be obtained after appropriate thresholding (see 
Figure 4-c). Then we use an ellipse to fit this region and get 
the major axis and minor axis of the torso (see Figure 4-d).  

(a) (b) (c) (d)

Figure 4: (a) Maximum connectivity energy from the head 
(b) Gesture map (c) The torso region (d) Results of 
extracted  head and torso region 

2.5 Limbs Classification 
Based on the torso ellipse we can further infer two joint 
points, shoulder and hip, which are the foci of the torso 
ellipse. After extracting these two joint points we start to 
classify the extremities into two classes: hand and foot. 
There is no need to consider the head extremity because we 
have already extracted the head region in the previous step. 
The extremities can be found by using the approach in [6]. 

We use the shoulder point as the reference point rather than 
the CoG used in [6]. For the first frame the extremities are 
classified into two classes based on their distance to the 
shoulder. Then we use a nearest-neighbor tracking 
algorithm to associate the extremities between frames. The 
algorithm is stated as follows: 
1. For a given extreme points i

kp  in frame i, compute the 
Euclidean distances between and all extremities 
points 1i

jp , where j=1...n. If a nearest neighbor 1i
jp

which ),( 1i
j

i
k ppD  is below a threshold exists, assign i

kp
as the same class as 1i

jp . D is the Euclidean distance. 

2. If i
kp  is not close to any njp i

j ...1,1 , treat p as a new 

extremity and assign it to one of the two class. If p is 
close enough to the shoulder, assign it to class "hand", 
otherwise assign it to class "foot". 

3. If there are more than two extremities which are 
assigned to the same class, start from the point i

farp  which 
is farthest from shoulder/hip. If i

farp  is originally 

classified as “hand”, the system will assign this point to 
“foot” if the class “foot” does not have two extremities 
associated with it. Otherwise discard i

farp . If i
farp  is 

originally classified as “foot”, discard i
farp  directly. 

Doing Step 3 recursively until the number of points in this 
class is 2. (Because a human can only has 2 hands and 2 
feet at most.) 

4. Repeat until all frames are processed. 

2.6 Elbow and Knee Positioning 
After the limbs classification step in Section 2.5, the hand 
extremities should connect to the shoulder and the foot 
extremities should connect to the hip through two more 
joint points: elbow and knee. Human limbs can be defined 
as two sets: hand-elbow-shoulder and foot-knee-hip. 
However, most human’s motions are so complicated that 
these points are not always in a row. In this paper we take 
advantage of the connectivity idea to locate the elbow and 
knee joint points from other known points derived in the 
previous steps. First we divide the joint set into two groups: 
hand-elbow-shoulder and feet-knee-hip. In Figure 5, based 
on  the human kinematic constraints, if we make a straight 
line L from shoulder (the green point) to hand (the blue 
point), the elbow (the black point) has a limited movement 
on the red line L  which intersects with L at the midpoint of 
shoulder to hand. Therefore, by searching all possible 
points on L , the elbow point can be obtained by 
minimizing the equation below: 

0,),(),(minarg EshoulderelbowEelbowhandEEtotal
(3)

where E is the connectivity energy function. Same 
operation is performed on the hip-knee-foot set so that the 
complete human body model can be constructed. 
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Figure 5: The kinematic constraint on the arm.

3. SIMULATION RESULTS 

In our experiments, a set of human motions are tested for 
the feasibility of the algorithm. The videos are taken in an 
indoor environment with stable lighting condition and a 
fixed side-view camera. The ordered contour boundary 
points set are sampled every 8 points empirically after the 
VO segmentation based on background subtraction with 4-
th order moment analysis. Four different types of behavior 
were conducted in our experiments: walking, sitting down, 
standing up and falling down. Figure 6 shows the modeling 
results on three postures: walking, sitting down and falling 
down. The notations below the figures are frame numbers. 
Table 1 tabulates the tracking and modeling accuracy on our 
test videos. 

Table 1. The precision rate of the modeling results 

behavior hand feet false
alarm 

Precision
(%)

hand 475 0 0 100% Walk feet 0 850 0 100% 
hand 150 0 122 18.67% Sit

down feet 0 459 0 100% 
hand 131 0 131 0% Stand 

up feet 0 423 0 100% 
hand 519 3 17 96.72% Fall

down feet 0 921 0 100% 

4. CONCLUSION 

We propose a 2D human body modeling system which 
integrates the video object extraction, idea of connectivity 
energy for joint point refinement and a nearest neighbor 
tracking algorithm. The whole human body is modeled by 
11 body parts, which are effectively identified and tracked. 
The system has shown promising capability on modeling a 
human under a single video camera shot. Our current 
system is highly silhouette dependent; therefore human is 
required to carry no object in order to avoid bad silhouette 
extraction. This will help some further research such as 
surveillance system or human behavior analysis. 

#17 #31 #40
(a)

#15 #23 #52
(b)

#21 #30 #51
(c)

Figure 6: The modeling result of a (a) walking (b) sitting (c) 
falling sequence. 
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