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ABSTRACT

This paper presents an approach to robust 3D people tracking using
multiple synchronized and calibrated cameras. The goal is to im-
prove people tracking accuracy when the subjects being tracked par-
tially occlude each other in some of the camera views. To achieve
this goal, Monte Carlo fine-tuning is deployed to rectify 3D peo-
ple locations obtained from partially occluded image observations.
In our approach, Gaussian mixture models and axis-parallel ellip-
soids are used to represent the appearance and the 3D body struc-
tures of the subjects, respectively. Related parameters are learned
off-line. Experimental results obtained using real videos illustrate
that the proposed approach is capable of accurate and robust 3D peo-
ple tracking under partial or complete occlusions.

Index Terms— 3D people tracking, Kalman filter, partial occlu-
sion, Monte Carlo fine-tuning, triangulation

1. INTRODUCTION

Robust 3D people tracking is a challenging task for computer vision.
Accurate 3D people location can greatly improve the performance of
high-level tasks such as trajectory reasoning, activity inference and
event understanding.

The major challenge for robust people tracking is occlusion. To
overcome this challenge, many multi-camera tracking approaches
have been presented recently, for example [1, 2, 3, 4, 5, 6, 7]. These
approaches assume that people walk on a ground plane. Hence peo-
ple tracking can be simplified into a 2D tracking problem on the
ground plane. In addition, tracking results from multiple cameras
can be connected through homography among cameras with respect
to the ground plane to further handle occlusions. For instance, in
[1] ground plane occupancy is first estimated from foreground im-
ages to provide a basis for further people tracking based on color
and refinement using global trajectory optimization. However, the
performance of these approaches will deteriorate if this assumption
is violated, e.g. when the people being tracked are having various ac-
tivities such as jumping or sitting down. The epipolar constraint has
also been used to recover tracking in a camera view when the target
has been occluded in this view [6]. Although such approaches using
the epipolar constraint do not constrain activities of the subjects, they
suffer in the presence of false candidates along the epipolar line. To
overcome these limitations, our previous work [8] presented a sim-
ple way to compute 3D location from 2D image information with
complete occlusion handling. A 2D circular search region obtained

from 3D predication is used to reject outliers (image regions similar
to the target) when an object is fully occluded in a camera view.

Although these approaches can provide a robust tracking under
complete occlusions, the 3D people tracking accuracy will deterio-
rate when the subject is partially occluded. Such scenarios can easily
take place when multiple subjects are present in the tracking space.
In such case, the center of 2D partially occluded object is difficult to
obtain correctly, which results in an inaccurate 3D tracking.

In this paper, we present a robust people localization system by
3D tracking of torso, and propose an effective Monte Carlo based
method to improve tracking accuracy in the presence of partial oc-
clusions. A Gaussian-based color model is learned to represent hu-
man appearance. Human torso is modeled as an axis-parallel ellip-
soid whose parameters are learned using gradient-descent method
in advance. A number of 3D samples are drawn from a Gaussian
distribution based on the estimated 3D location from triangulation
algorithm and 3D human torso structure. These samples will be
back-projected onto all available camera views to compute matching
scores indicating how well these samples match color segmentations
in each view. The fine-tuned 3D location is computed by weighting
all the samples. Kalman filtering is then used to predict and smooth
final tracking results.

A closely related method to handle occlusions was presented in
[9] for people tracking with 3D target and environment models us-
ing a particle filter. Similar to our method, a 3D ellipsoid is also
adopted in their work to represent the human. Partial occlusions are
solved using the matching score in particle filtering. The ellipsoid’s
structure parameters are incorporated in the state space. However, as
the number of targets and views increases, the state space of combi-
nation of target’s states increase dramatically. To make the tracking
robust and efficient, we learn 3D ellipsoid structure based on the
matching score in advance. The estimated 3D tracking results are
efficiently computed from 2D tracking results. Monte Carlo fine-
tuning is used to verify and refine these 3D tracking results. Addi-
tionally, the target’s color information is not used in [9]. So, it is
error-prone to maintain target identity solely based on the continuity
of tracking trajectories.

There are certain assumptions in our approach. Firstly, at least
three cameras are required to integrate multiple 2D tracking results.
Secondly, we assume that people are conducting activities mostly
with upright upper body pose. Thirdly, we assume that partial oc-
clusions are only caused by targets being tracked. The current ap-
proach cannot effectively handle situations where occlusions were
introduced by other objects/people that are not tracked by the sys-
tem. Finally, the illumination variation of the space needs to be
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maintained within an acceptable range.

2. HUMAN BODY MODELING

2.1. Color Modeling

In order to track subjects in varying lighting conditions, we adopt
hue, saturation, value (HSV) color space because it separates out
hue (color) from saturation and brightness and hue is relatively re-
liable to identify different subjects in uneven lighting environment.
Considering that the clothes of the subjects can contain a mixture of
colors, we represent the color appearance of a target using a mixture
of Gaussian in the HSV space. For example, the color distribution of
target j is represented a 3D Gaussian Cj with mean μj and covari-
ance matrix Σj in 3D color space. Thus, the probability that a pixel
HSV value ξ belongs to target j can be represented in ( 1).

P (ξ|Cj) =
1

(2π)
3
2 |Σj | 12

exp{−1

2
(ξ − μj)

T Σ−1
j (ξ − μj)} (1)

In our application, since the subjects wear shirts with a dominant
color, color distribution can be approximated using a single Gaus-
sian. A color-based target model is trained in the tracking initializa-
tion stage. We manually select subject’s torso region in each camera
view. The corresponding color model is statistically computed based
on all the pixels’ HSV values in the initial torso region, and is then
associated with each person. Outlier points, which can be caused by
image noise and specular highlights, have little influence upon this
representation. This probabilistic based color model also makes the
people tracking insensitive to small variation of ambient illumina-
tion.

2.2. Structure Modeling

In our approach, subjects’ 3D location is obtained by 3D tracking
of the torso. Assume that most of time people are in poses with up-
per body upright, such as walking, running, sitting down. An axis-
parallel ellipsoid is sufficient to represent human torso. We model
human torso as an upright ellipsoid with two parameters (h, r), which
are ellipsoid’s height and radius respectively.

To reduce the dimensionality of the tracking state vector, we
learn the structure parameters (h, r) using training data. Namely,

given color segmentation sequences E = {E(c)
i }i=1..N,c=1..M , where

i is image index and c is camera view index, the best ellipsoid struc-
ture is obtained in ( 2):

(h, r) = argmax
(h,r)

NY
i=1

MY
c=1

m(Xi, h, r, Ec) (2)

where m(Xi, h, r, Ec) is a matching score indicating how well the
projection produced using the structure and position parameters can
match the silhouette of the color-segmented torso image. We use
a matching score m [9], shown in ( 3), based on the ellipsoid’s 3D
location X , structure parameters (h, r) and the human torso segmen-
tation Ec in camera c.

m(X, h, r, Ec) =
|F c(X, h, r) ∩ Ec|
|F c(X, h, r) ∪ Ec| (3)

where F c(X, h, r) indicates the projected 2D ellipse area in
camera view c. For multiple people, F (X,h, r) is the union of all
ellipse areas.

Given camera projection matrix P , computed from camera ex-
trinsic and intrinsic parameters, it’s straightforward to map an ellip-
soid quadric Q (which is specified by Xi, h, r) to an ellipse conic C
in a 2D image plane using (4) [10]:

C = (PQ−1PT )−1
(4)

Hence, F (X,h, r) can be easily obtained.
In practice, for each person, a walking sequence including body

rotation is recorded. We extract 20 frames to represent the sequence.
The ground-truth of 3D location for each frame is computed us-
ing triangulation. To achieve this learning, we use gradient-descent
method to find the optimal 3D structure parameters.

3. MULTI-CAMERA TRACKING

An overview of multi-camera 3D people tracking is illustrated by the
diagram shown in Fig. 1. Tracking is initialized manually.

Fig. 1. Diagram of 3D People Tracking

3.1. 3D Kalman filtering
In order to obtain smoothed 3D people location and conduct reliable
location prediction, Kalman filters are deployed. Each target is as-
signed a Kalman filter to perform tracking smoothing and prediction.
The first-order motion model is adopted to represent motion dynam-
ics. The state vector Xt of the Kalman filter includes the target’s 3D
position (x, y, z) and velocity (ẋ, ẏ, ż). The Kalman filter uses Zt,
the result from the Monte Carlo fine-tuning as input and then pro-
vides smoothed location estimate for the current time t and location
prediction for the next time instant t + 1. The smoothed location is
output by the tracking system as the final 3D tracking result and the
predicted subject location at t+1 is used to specify 2D search region
in the upcoming image frame.

3.2. Robust 2D Tracking and Outlier Rejection
The goal of 2D tracking is to detect people locations within the
search region and to reject outliers which have similar color to the
people being tracked. We firstly do color segmentation to extract
candidate blobs. Outlier rejection is then performed only within the
search region which is suggested by Kalman prediction.

I  910



3.2.1. Color Segmentation
Given image sequences from multiple camera views including peo-
ple to track, we firstly use background subtraction to obtain the fore-
ground maps in each view. In our approach, we adopt the codebook-
based background subtraction algorithm [11] which is able to re-
move shadow. Then, we do simple but effective color segmentation
based on the target color model. All foreground pixels in each view
are further tested on each target color model using ( 1). The pixel i
is labeled as target j if P (ξi|Cj) > Tj , where Tj is the threshold
for target j. After that, we apply morphological operation Opening
to further remove noise and fill in small holes. Finally, Connected
Component Analysis is employed to get all pixel-connected blobs.

3.2.2. Outlier Rejection
In order to remove outliers introduced by cluttered and varying scenes,
we specify a rectangular search area to detect the true target. The
search area Rt at time t is defined as Rt = (xt, yt, Ht, Wt), where
(xt, yt) is the predicted 2D position obtained from the projection of
3D Kalman prediction. The search rectangle size (Ht, Wt) is adap-
tively determined by (5).„

Ht

Wt

«
= (αst−1 + β)

„
Bh

t−1 + δh

Bw
t−1 + δw

«
(5)

where st−1 is the target’s 2D speed at time t−1, α and β are scaling
factors. (Bh

t−1, B
w
t−1) are the height and width of the bounding box

of the foreground target from color segmentation at time t − 1, and
(δh, δw) are constants that prevent the search rectangle vanish due
to complete occlusion . Note that (Bh

t−1, B
w
t−1) are not the size of

the search rectangle at t − 1. The search rectangle is adaptive to the
target’s 2D speed since high speed introduces more uncertainties. β
provides a lower bound on the size of the search rectangle when the
target stops. In practice, α and β are manually set to be 0.5 and 1.2
respectively. (δh, δw) is set to (40,30). Any target candidate after
color segmentation outside of Rt will be rejected as an outlier. It’s
still possible to have some candidates within Rt. The one closest to
(xt, yt) will then be selected as the 2D target location in this camera
view at the current time instant.

3.3. Monte Carlo Fine-Tuning
Partial occlusion is more common than complete occlusion in multi-
ple people tracking. Inaccurate 2D centroid localization of the color
segmentation due to partial occlusion results in a drift in 3D loca-
tion computation. To accurately track partially occluded people, we
propose Monte Carlo based method to fine-tune the 3D observation
location.

At each time instant t, we draw N Gaussian samples St =
{si

t, π
i
t}N

i=1 based on the mean X̃t and covariance Σt. X̃t is the
triangulation result and Σt is directly obtained from Kalman filter’s
previous state covariance matrix Pt−1. Each sample si

t is associated
with a weight πi

t.
To compute πi

t, in each camera view, the projection of the el-
lipsoid at position si

t is first obtained using (4). Then, the matching
score given by (3)is evaluated for each camera view to see how well
the projection can match the target foreground from color segmen-
tation. Finally, the sample weight πi

t is given by the product of the
matching scores of all camera views:

πi
t =

MY
c=1

m(si
t,h, r, Ec

t ) (6)

Since one ground position cannot be occupied by two persons,
sample drawing needs to be controlled by this valid rule. For a sam-

ple s = {(xj , yj , zj)}j=1...K where K is the number of people, if
there exists two ellipsoids u and v such that

p
(xu − xv)2 + (yu − yv)2 < ru + rv (7)

we simply set the corresponding π = 0. After computing the weight
of each sample, the fine-tuned 3D location Zt, which serves as Kalman
filter’s input, is estimated in ( 8)

Zt =

PN
i=1 πi

ts
i
tPN

i=1 πi
t

(8)

3.4. Handling of Complete Occlusion
In our approach, if there are at least two cameras detecting the target,
we can use triangulation to compute 3D location based on visible
camera views. To continue 2D tracking and outlier rejection in the
camera view where the person is completely occluded, we project
smoothed 3D location onto the camera image plane and assume the
projected 2D location is the occluded target’s position. Therefore,
the person identity can be maintained when he/she reappears in the
view.

When the target is detected in only one camera view, we are
not able to recover the 3D location of object reliably [10]. Thus,
during a short period of time, we approximate the 3D location X̃t

using 3D target location X̃t−1 and the current 2D target location x̃t

provided by the view in which the object is visible [8]. Therefore, the
target can be continuingly tracked over the period when it’s visible
in only one view. However, if this situation lasts over a long period
of time, the estimation error will be accumulated and the 3D location
estimate will drift away from the true value.

4. EXPERIMENTAL RESULTS

Our tracking system consists of three color CCD cameras (Dragon-
fly2,Point Grey research) and a PC (Pentium IV 3GHz, 1GB RAM).
Image resolution is 320 × 240. The cameras are calibrated in ad-
vance. In our experiment, human structure parameters are learned
in advance (Person 1: h1 = 0.0825, r1 = 0.0473; Person 2:
h2 = 0.075, r2 = 0.0425, 1unit ∼= 427cm). The number of
fine-tuning samples N was set to 200. To better cover the activity
space, we set large FOV for each camera. So, lens distortion [10] is
also handled for every frame.

In order to evaluate the tracking performance of our system, we
extract two video sequences from a long video clip. Sequence 1 is
used to demonstrate the capability of tracking under partial occlu-
sions. Sequence 2 is to demonstrate the capability of tracking under
complete occlusions and outlier rejection for one camera view.

In Fig. 2, two people with different upper body color are walking
in the activity space causing partial occlusions (frame 500, 518 and
543) for some cameras. The row C1, C2 and C3 show the real cam-
era images. Each frame is superimposed with a rectangular search
region and target identity number. Note that the size of search re-
gion is adaptively changed according to color segmentation and 2D
moving speed. The row P1, P2 and P3 show the estimated 2D corre-
sponding ellipses projected from 3D ellipsoids that represent human
upper bodies. In frame 518, two person are walking very closely.
Person 1 is partially occluded in camera C1 and person 2 is also par-
tially occluded in camera C3 at the same time. However, the correct
2D projection results in P1 and P3 show that 3D location is recti-
fied using Monte Carlo fine-tuning, even though color segmentation
results will give an inaccurate estimate of the centers of two people
in 2D image planes. Fig. 3 shows two people’s tracking trajectories

I  911



in XYZ directions for sequence 1. The trajectory is smooth in three
dimensions. The results show that our approach can handle partial
occlusion effectively and provide an accurate 3D people location.

In Fig. 4, we show three frames (frame 589, 621 and 738) in
camera C1 from sequence 2. In frame 589, person 2 is completely
occluded by person 1 in camera C1. A red ’+’ is issued in current
camera view to localize 2D position suggested by 3D Kalman pre-
diction. In frame 738, person 1 is walking close to a mirror which is
in upper right corner of the image. The 2D projection in P1 shows
that the false people image introduced by the mirror is rejected as
an outlier and person identity is maintained. There results show that
a robust tracking can be achieved under complete occlusion or false
candidates.

Fig. 2. Tracking under partial occlusions

Fig. 3. Tracking trajectory in X-Y-Z dimensions (1unit ∼= 427cm)

5. CONCLUSIONS
In this paper, we present an approach to multi-view 3D people track-
ing. The proposed approach can improve tracking accuracy when the

Fig. 4. Tracking under complete occlusion and outlier rejection in
one camera view

subjects partially occlude each other in some of the camera views.
Experiment results show that our approach can robustly provide ac-
curate and consistent tracking in the presence of partial or complete
occlusions.
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